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1.0 PROGRAM PLAN OUTLINE AND NARRATIVE
1.1 Introduction

This Annual Report focuses on the effort that has been completed
during the second year of the technical effort. The total project {s now
expected to last a total of five years. A1l elements of the technical
tasks to be accomplished have now been defined. The new effort in the
third year 1s the initiation of programming of the advanced methods
formulation; the approximate methods effort will not begin until the fourth
year of technical effort. ‘

The project 1s very much a team effort with significant contributions
coming from several task managers: Dr. O.H. Burnside - Verification/Validation
Coordination; Dr. Y.-T. Wu - NESSUS/FPI Development; Drs. J. Nagtegaal, S.
Nakazawa and Mr. J. Diaz - PFEM Development; Dr. K.R. Rajagopal - Verification
Studies; Dr. P. Fink - NESSUS/EXPERT Development; Prof. P. Wirsching -
Advanced Simulation Methods; and Prof. S. Atluri - Hybrid FEM Development and
Level III Modeling. The SwRI Program Manager acknowledges the critical
contributions from each of these individuals.

The remainder of this Section outlines the elements of the technical
approach being taken in PSAM, Section 2.0 summarizes the technical
accomplishments of the second year of the project, supported by various
appendices. Section 3.0 presents a brief outline of some of the current
efforts. ,

1.2 Probabilistic Finite Element Methods (PFEM) Plan

The developed methods of analysis are to treat 1inear problems as well
as those with nonlinear material and geometric response. Stochastic
modeling of loads (e.g., centrifugal, thermal, pressure), geometry, and
material behavior are being modeled with three levels of approximation,
relative to accuracy and confidence. Level I analyses treat randomness as
being spatially homogeneous (e.g., each part has a different modulus, yield
stress, thermal load, etc.). Level Il analyses treat random variables as
random fields (e.g., modulus variability is different in the bore of a
disk, versus the rim of the disk; pressure uncertainty is different at the
root of an airfoil versus the tip of the blade). Level III stochastic
modeling is to be able to reflect uncertainty between variables in the
governing equations (e.g., strain agrees with displacement gradients only




in stochastic, not deterministic, terms; stress is related to strain
through stochastic relations).

Two methods of probabilistic modeling are included in the various
analysis methods. The first of these is the Fast Probability Integration
(FPI) method. The FPI method is adopted from the field of structural
reliability as a way of predicting the probability that a response variable
(e.g., stress, frequency) will exceed some eiTowabie. The method is based on
establishing the approximate sensitivity of a response variobie to the
stochastic variables, and then processing these sensitivities by the FPI
algorithm to establish the cumulative response distributions for the
variables. The second method is direct simulation using an enhanced Monte
Carlo method. Both probabiiistic prediction methods will make use of the same
structural sensitivity data base, which s generated by | NESSUS Confidence
':1eveis will be estimated for the response variable distributions that are
calculated. A composite load spectrum analysis procedure will be included.

The PFEM is a direct adaptation of standard finite element methodology to
the needs of PSAM. The finite element code (NESSUS/FEM) is to include
plate and shell elements based initially on the displacement method of
formulation, and on linear equations of motion and material behavior.

Hybrid plate and shell elements are to be included, as well as nonlinear
geometric and material behavior. The NESSUS/FEM code will include a
variety of standard finite elements for structural modeling. The
NESSUS/FEM program will allow for nonlinear elastoplastic/creep modeling,
and for geometric nonlinear problems of finite displacement, rotation, and
strain,

In addition, an enhanced shell/plate element formulation wiil be
deveioped This enhanced formulation wiii be a quasi-continuum element

that provides for surface data input and nodal stress recovery, consistent
with the requirements of the NASA SOW. The enhanced element is a
displacement formulation, developed from the Hu-Washizu variational
formulation. Stresses, strains, and displacements will be interpolated
independently. In order to reduce the formulation to a displacement-1ike
formulation, the stress and strain fields are discontinuous between the
elements. Displacements will be interpolated on a nodal basis, with nodes
selected at the surfaces of the shell/plate element. The element will
satisfy all constant stress modes and will provide full rigid body mode



capability (i.e., has correct rank). The eight noded element will provide
for surface pressure load definition, as well as for nodal stress, strain
recovery.

The hybrid element formulation is also based on the Hu-Washizu
variational statement. Thus, it will have stress modes that are defined
independent of the displacement modes. The element will be a sixteen node
shell/plate element with surface loading and nodal stress, strain recovery
capability. Special interpolation capability for severe thermal gradients is
planned in both the enhanced and hybrid shell/plate formu]atiods.

Material response is to include the range from elastic to
thermoviscoplastic. The material model will be based on theoretical
development for a random relationship between stress and strain for the
general class of thermomechanical response problems. The material modeling
considerations will allow for a full, Level IIl interpretation of
stress/strain stochasticity. The model will be based on the assumption
that each material has its own stochastic response over the full range of
loading history. Thus, we rule out as a mathematical construct, the notion
of incremental stochasticity. The theoretical material modeling déve1opment
will admit implementation of endochronic or thermoviscoplastic considerations.
. The NESSUS code is modular for adaptation to the General Purpose

Structural Analysis (GPSA) framework. The modules include NESSUS/FEM,
NESSUS/PAAM, NESSUS/BEM, NESSUS/FPI, NESSUS/PRE, NESSUS/EXPERT, and
others as needed. Interfaces between these modules will be clearly
defined.

The approach to validation is to perform validation and verification
studies on the new element and formulation capabilities as they become
available. This will also provide for direct comparisons between the
varfous solution capabilities. The NESSUS code is to be continually
validated through its application to well-defined problems with known
probabilistic responses in order to demonstrate the full and reliable
capability of the code.

It has been found to be very important that the verification study
include a wide range of simple structural models that exercise the various
options of the NESSUS code. These verification problems, being run by SwRI
and Rocketdyne, serve to provide further confidence in the code, to déve1op
rule bases for NESSUS/EXPERT, and demonstrate the utility of the code.



The NESSUS code will be verified by its application to four selected
space propulsion system hardware items. These will include the turbine
blade, transfer duct, LOX post, and the high pressure oxidizer duct.
Experimental data to support the analyses will be compiled and
statistically modeled. The four verification problems are outlined in
Appendix A. [ e e
1.3 Probabilistic Approximate Analysis Methods (PAAM) Plan

The PAAM code will be established by SwRI in consultation with
Rocketdyne staff. The purpose of the PAAM code is to provide a mechanics
of materials approach to the probabilistic modeling of plate and shell type
structures. The approach to be taken by SwRI will be to:

1. Identify simplified plate/shell problems representative of plate
and shell regions within the four selected propulsion system
components.

2. Identify plate and shell type analytical solutions that
correspond best to the physical problems identified in 1., above.

3. Modify the analytical solutions to account, in a suitable and

approximate manner, the loading, material response, and structural
response features required for the four component problems.

4. Program NESSUS/PAAM to include a libriry of these solutions and
approximation methods for loading, material response, and structural
response.

1.4 Probabilistic Advanced Methods (PAdvAM) Plan

The basis of the Probabilistic Advanced Analysis Methods is the boundary
element method, specifically the BEST3D code previously developed under NASA
HOST funding. SwRI has further developed this code and proposes to modify it
in a manner suitable for inclusion in the PSAM analysis library as NESSUS/BEM.

The boundary element method (BEM) contrasts, for the linear problem,

with the finite element method (FEM) by the fact that the governing

equations are written at the boundary of the body only. The so-called
boundary integral equation (BIE) governs the relationship between tractions
and displacements at the surface of the body. The only geometric

description of the body that is required is the surface of the body. For

the thermoelastic problem with variable material properties and problems of
1inear vibration, it is also possible to reduce the continuum problem to a
boundary formulation. For problems with geometric or material nonlinearities,
and for transient dynamic problems, a volume modeling is generally required.




The perturbation algorithm will be developed for NESSUS/BEM. For
those problems with no volume integrations, all perturbations will be in
terms of surface data. Geometry, for example, will be perturbed through
explicit differentiation of the boundary modeling shape functions. The
perturbations will maintain continuity of boundary shape by moving the
boundary node locations. Perturbations of the mass matrix for vibration
analysis will be similarly modeled. Level I material perturbations will be
explicitly accounted for.

Level II and Level III material perturbations will be examined using
one of two possible approaches. The most direct is to handle these through
volume integrals (discussed below). The most interesting is to develop
boundary models that can interpolate volumetric changes, in terms of
perturbed boundary data. The latter approach is favored and will be the
first to be explored. Explicit differentiation or differencing of boundary
data will be used in order to avoid an iterative solution algorithm.

Volume integration methods will be especially developed for NESSUS/BEM
to take advantage of plate/shell type of behavior. Simplifying
interpolation assumptions will be made to reduce the need for significant
numbers of volume discretizations in the through-thickness direction. It
will be assumed that deviations in strain behavior in this direction from
the linear solution are not excessive.

The first year (FY87) will establish the 1inear static and dynamic
thermoelastic modeling capability for NESSUS/BEM. The second year (FY88)
will focus on the establishment of the essential nonlinear modeling
capability, but without the full Level III thermoviscoplastic modeling and
random transient loading. The third and final year (FY89) will release the
full nonlinear capability.

The stochastic basis of a variational model of structural response
will be established by GIT researchers under the direction of Professor
Satya Atluri. The stochastic variational statement will be used to
demonstrate the formulation basis of the Level I, II NESSUS PFEM models.
Further, it will be used to establish the Level III formulation for
adoption into NESSUS. It is expected that the Level III model will be
based on the use of correlation model matrices linking the strains and the
displacement gradients, and another 1inking stress to the material
constitutive behavior.



2.0 TECHNICAL PROGRESS SUMMARY

2.1 Task I: PFEM

2.1.1 NESSUS/FEM Development

2.1.1.1 Status at End FY85
The finite element analysis module NESSUS/FEM has evolved

from the MHOST code, developed by MARC for Pratt and Whitney Aircraft Company
under NASA contract NAS3-23697. A review of the capabilities of MHOST by SwRI
indicated the need for enhancements to provide additional features relevant
to the analysis of reusable space propulsion system components. This
enhanced version of the MHOST code was delivered to SwRI in August 1985 as
NESSUS 0.1, and was the latest version of the code shipped from MARC prior
to the end of FY85.

The major enhancements provided with NESSUS 0.1 included:

A. Element 1ibrary and problem modeling features
0 Addition of a two-noded Timoshenko beam element
0 Rotational inertia terms in consistent mass matrices
o Grounded springs of prescribed stiffness
0 More convenient definition of time-histories for pulse
loading

B. Algorithmic enhancements
o Displacement method option for linear elastostatics
o Power shift option for eigenvalue extraction

C. Analysis capabilities for linear systems
0 Transient dynamics using mode superposition
o Harmonic loading and base excitation
o Random vibration (PSD) analysis
By the end of FY85, the basic formulation for probabilistic finite
element analysis as implemented in NESSUS had been developed and
demonstrated on a few sample problems. The original approach relied on a
Taylor series expansion of the stochastic problem about a deterministic
solution. This approach did not appear to be practical for the large
systems of finite element equations parameterized by many random variables
that are needed for realistic SSME applications. An alternative approach
was developed, based on an iterative perturbation analysis method that uses
the factorized stiffness of the unperturbed system as the iteration
preconditioner for obtaining the solution to the perturbed problem. This
approach eliminates the need to compute, store and manipulate explicit partial
derivatives of the element matrices and force vector, which not only reduces



memory usage considerably, but also greatly simplifies the coding and
validation tasks. A similar approach for the solution of the perturbed
symmetric eigenprobliem was developed by Professor Juan Simo, at the Applied
Mechanics Division, Stanford University, for implementation in NESSUS/FEM.

The efficient treatment of correlated random variable fields was
identified early on in the PSAM effort as a major practica1 {ssue, since
m&ny SSME applications involve random variables that are correlated to some
degree. Examples of this include random pressure and temperature fields
defined on the surface of a turbine blade, or the thickness of the walls
and liners in the transfer ducts or nozzle of a rocket engine. The
strategy adopted in the NESSUS code relies on a variable transformation
into the eigencoordinates of the covariance matrix defining the random
field. The transformed variables can be shown to be uncorrelated and may
therefore be manipulated as such in the NESSUS/FEM and NESSUS/FPI modules.
The computation of the transformed variables may be carried out prior to
the finite element analysis of the model and may, therefore, be regarded as a
pre-processing operation. _

Several aspects of the proposed formulation were demonstrated on an
ad-hoc basis before the end of FY85. The feasibility of the iterative
perturbation algorithm for elastostatics was demonstrated in April 1985
with a problem involving a clamped square plate under uniform pressure
loading, using a 10 x 10 mesh of shell elements and subjected to thickness
variations along one edge. The numerical manipulations proposed for
hand1ing correlated data were demonstrated also in April 1985 with a
problem involving a scalar random variable field defined on a 10 x 10 grid
with varying strength of correlation. Finally, all ingredients for the
proposed formulation were combined in a demonstration problem using a
simplified model of a curved turbine blade discretized with 48 shell
elements, and having random pressure and temperature fields with partial
correlation, random uniform thickness, and random stiffness at the root.
This exercise was completed in May 1985. Although the formulation for the
jterative solution of the perturbed symmetric eigenproblem was essentially
complete by the end of FY85, no demonstration problems using this approach
were available at the time.



2.1.1.2 Database Development

The perturbation databasg (Fig. 2.1) provides an external
record of the perturbation data obtained during execution of the NESSUS/FEM
module. In a typical NESSUS/FEM execution, a number of perturbed solutions
about a deterministic state are computed with the use of appropriate numerical
algorithms. The results for both the unperturbed and all perturbed systems
are added to the perturbation database as soon as each converged solution
becomes available. The information stored in the database may then be
accessed by the NESSUS/FPI module, in order to extract the data required for
the computation of a system reliability estimate or to obtain distribution
curves for relevant response variables. The perturbation database is problem-
specific, and was designed to centralize all the information pertinent to the
analysis of a given model, even if it is obtained in the course of multiple
NESSUS/FEM executions. Future releases of NESSUS/FEM will allow full use of
these capabilities.

The perturbation database resides in a binary
(unformatted) direct-access file, and may be accessed using standard FORTRAN
[/0 facilities. The database is structured as a two-way ordered linked 1ist
(Fig. 2.2), allowing for quick and efficient traversal in search of a specific
entry. This type of data structure allows for the insertion and deletion of
individual entries anywhere in the 1ist without violating the original
ordering convention (Fig. 2.3). It is therefore possible to enrich the
existing database with information obtained in multiple executions of
NESSUS/FEM without having to regenerate data obtained in previous runs.

The organization of a typical database constructed by
NESSUS/FEM is outlined in Fig. 2.4. The entry point is a single PROBLEM
HEADER RECORD, always occupying the first physical record in the file. This
record contains sizing information pertinent to the problem, together with
pointers to two distinct ordered 1inked lists. One 11st contains the load
incrementation history, with the individual perturbation data sets nested
inside each increment. The second 1ist contains the eigenvalue and
eigenvector data, this time with the individual eigenpairs nested inside each
perturbation data set. Both lists consist in a series of INCREMENTAL or
EIGENPAIR DATA HEADER RECORDS, forming two two-way ordered linked 1ists, shown
in Fig. 2.4 as extending downward and upward from the single entry point.
These headers in turn contain pointers to the actual DATA RECORDS, containing
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Another Item from a Similar Linked List, as Shown by the Dashed
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information on the type of perturbation and the perturbed system response. A
null pointer is used to flag the unavailability of data, which may result from
the lack of a converged solution. Null pointers are also used to terminate
both the incremental and eigenpair data lists.

The present implementation of the perturbation database
provides easy and efficient data retrieval using standard algorithms for
manipulating ordered linked lists. Insertion and deletion of individual
entries can be accomplished locally without the need for moving large blocks
of data. The internal data structure was designed with the flexibility to
accommodate additional capabilities planned for future releases of NESSUS/FEM
with minimal adjustments to the software already in place. The use of binary
(unformatted) files provides compact storage for the potentially massive
amounts of data required for the analysis of realistic problems. For small
problems, a simple FORTRAN utility is available to provide translation of the
database into formatted (printable) form. This can be quite useful for
debugging codes written to access the database, or for moving small databases
across different computer systems. The internal data structure of the
perturbation database is well documented in a report which can be used as a
guide for the development of new codes requirihg access to existing
databases. Finally, it should be noted that the information contained in the
perturbation database may be useful for applications other than probabilistic
structural analysis, such as the investigation of the sensitivity of the
response to several design parameters.

2.1.1.3 NESSUS/PRE Module Development

The NESSUS/PRE module (Fig. 2.5) is a pre-processor used
for the preparation of the statistical data needed to perform probabilistic
finite element analysis with NESSUS/FEM. NESSUS/PRE allows the user to
describe a spatial domain defined by a set of discrete points, typically
corresponding to the nodal points of an existing finite element mesh. One or
more random variable fields may then be specified over this spatial domain by
defining the mean value and standard deviation of the field variables at each
at each point, together with the appropriate form of correlation. Each random
variable field may be modeled as uncorrelated, fully correlated or partially
correlated. The current version of NESSUS/PRE 1imits the treatment of
partially correlated fields to fields of Gaussian variables with equal
correlation strength in all directions (isotropic correlation).
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Each random field is treated according to the form of
correlation specified for it. Uncorrelated random fields are automatically
decomposed into a set of uncorrelated vectors, each corresponding to a unit
variation at a given degree-of-freedom. Fully correlated fields are
automatically converted to a single vector, corresponding to a scaling of the
random field by one standard deviation. For a partially correlated random
field, the preprocessing operation in NESSUS/PRE is considerably more
complex. This will involve the construction of the variance-covariance matrix
for the field, followed by the spectral decomposition of this matrix. The
fieid data {is then transformed into the eigencoordinates of the covariance
matrix, yielding a set of mutually uncorrelated random vectors which contain
all the information present in the original correlated field. The theoretical
details of this procedure are given in Section 5.3.1 of the PSAM First Annual
Report. The spectral decomposition of the covariance matrix is performed
conservatively, using Jacobian iteration to solve simultaneously for all
eigenvalues and eigenvectors of the matrix. If the correlation is strong, the
uncertainty in the data is dominated by just a few of the highest eigenvalues
of the matrix. Hence, the user is given the option to simplify the problem by
truncating the spectrum to a prescribed tolerance, retaining only the most -
significant eigenvalues for the analysis. This strategy can produce a very
significant reduction in the amount of computation required for the analysis,
especially in problems involving a large number of random variables. In all
cases, the output from NESSUS/PRE will consist of a set of uncorrelated random
vectors written to an external formatted data file. This file will contain
the random variable definitions for NESSUS/FEM, and may be included in the
input deck to the finite element module without further modification.

The present implementation of NESSUS/PRE allows the
specification of random fields involving:

1. nodal coordinate data
. nodal shell thickness
. nodal shell or beam normals

2
3
4, thickness of plane stress elements
5. modulus of elasticity

6

. Poisson's ratio
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7. thermal expansion coefficient

8. material density

9. rotational speed

10. nodal force vectors

11. element pressures and edge tractions
12. nodal temperatures

13. elastic beam section properties

14, base spring stiffnesses

15, orientation of anisotropy axes

Additional types of random variables will be included in
future releases of NESSUS/PRE as required by the enhanced capabilities of
NESSUS/FEM.

2.1.1.4 Code Structure

The NESSUS/FEM module (Fig. 2.6) provides finite element
modeling and analysis capabilities for probabilistic structural analysis
problems. The finite element code is structured as a set of six major driver
routines, reflecting the types of analysis currently available. These
include:

1. A static analysis driver for the solution of linear and

noniinear problems in either a purely iterative manner or in
incremental-iterative fashion.

2. A bifurcation buckling driver, used for stability analysis of
linearized structural systems.

3. A modal extraction driver for the determination of the
undamped natural frequencies and mode shapes for vibrating
structures.

4. A mode superposition driver for the analysis of steady state
or transient linear vibration problems in the time domain.

5. A random vibration driver for the analysis of problems
involving stationary random excitation by integration in the
frequency domain.

6. A direct time integration driver using the Newmark-b method
for the solution of linear and nonlinear transient dynamics
problems.
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A new facility has been added at the topmost level of
NESSUS/FEM to allow conditional transfer of control between driver routines.
This feature allows the'performance of more sophisticated types of analysis,
which are useful for the realistic modeling of typical SSME components. A
typical application might involve the static analysis of a spinning turbine
blade, with centrifugal loading applied over a number of load increments.

At a prescribed increment number, control of the execution may be
transferred to the modal extraction driver, in order to determine the
vibration characteristics of the blade, including centrifugal mass and
stress stiffening effects due to the initial stresses obtained in the
static analysis.” These features were first available in Version 1.2 of the
code.

Significant efficiency improvements were achieved by
replacing the old band and frontal equation solvers with a newly developed
profile solver. The new solver, available in Version 1.3, not only provided
increased speed in the factorization and back substitution phases of the
analysis, but also resulted in a substantial reduction of memory requirements
for medium to large problems. This allowed the in-core solution of large
turbine blade models using 8-noded bricks. Selected performance results for.
the new solver are summarized in Fig. 2.7 - Fig. 2.9. These numbers were
obtained on the PRIME 9955 at MARC, with the memory requirements expressed in
single precision (32 bit) words.

The extraction of eigenvalues for both 1inear dynamics
and buckling problems is performed using the subspace iteration method.
Multiple power shifts may be used to extract modes within prescribed frequency
bounds. This technique is particularly useful in the amalysis of structures
containing rigid-body modes. The eigenvalue analysis subsystem is very
similar to the one available in NESSUS 1.0, having been modified to
accommodate profile storage for the stiffness and mass matrices, together
with other minor efficiency improvements. .

A full library of modern algorithms for nonlinear
analysis is available in NESSUS/FEM. Both full Newton and modified Newton
jteration algorithms have been available since Version 0.1. Newly implemented
algorithms for nonlinear analysis include the line search algorithm,

Davidon rank-one secant Newton update and inverse BFGS rank-two update.
These algorithms have been available in Version 1.0 and up. Variations of
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Fig. 2.7 SSME HPFTP Blade Model with 1025 Brick Elements and 1575 Nodes

Profile Solver Band Solver
Memory Requirement 3483811 4459647
Solution Time 1466.594 sec N/A*

* Too Large to Run on PRIME 9955 at MARC
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Fig. 2.8 Buckling Analysis of a Cylinder with 160 Shell Elements and 176

Nodes
Profile Solver Band Solver
Memory Requirement '
(a) Static 498873 596703
(b) Eigenvalue 1044773 1340375

Solution Time
(a) Static 62.057 sec 171.430 sec
(b) Eigenvalue 66.788 sec 187.551 sec
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Fig. 2.9 Modal Analysis of a Composite Laminate F&n Blade with 240 Shell
Elements and 279 Nodes '

Profile Solver Band Solver

Memory Requirement 824341 1054259
Solution Time 24.794 sec 93.764 sec
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many of these algorithms have since been applied to the computation of the
solution to the perturbed elastostatic problem, as discussed in Section
2.1.1.6 of this report.

2.1.1.5 Element Technology

The element 1ibrary currently available in NESSUS
consists of six isoparametric, numerically integrated element types (see Table
2.1). Geometric quantities and material properties are defined at the nodes,
and interpolated into the interior of each element using the appropriate shape
functions. A nodal projection and smoothing algorithm is used to allow the
reporting of strains and stresses on a nodal basis.

Continuum-type problems may be modeled using bilinear
four-node quadrilaterals for plane stress, plane strain or axisymmetric
situations, or trilinear eight-node bricks for three-dimensional problems.
A1l B-matrix routines for continuum elements allow full, reduced, trapezoidal
and selective integration. Selective integration is implemented using the
B-bar approach, and has been designed to facilitate the implementation and
testing of different integration weighting schemes. The performance of
these elements has recently been improved with the adoption of a strain
filtering scheme based on a local element orthogonal coordinate system
constructed by polar decomposition of the Jacobian matrix for the
isoparametric mapping. This technique enhanced the behavior of the element
in situations involving distorted elements.

The shell element currently available in NESSUS is a
four-node {soparametric formulation derived from the Reissner-Mindlin plate
and shell theory. Bilinear interpolations are used for the coordinates,
displacements and rotations. The element 1s selectively integrated, and
stabilized by hourglass control on the transverse shear terms. An in-plane
twist term is included to avoid the "drilling mode" singularity on a flat
assembly of elements. This element may be used to model thick shell
problems, with significant transverse shear deformation, and retains
acceptable accuracy when used to model thin shell structures.

A two-node linear isoparametric beam element is also
available, based on Timoshenko beam theory. Linear interpolations are used
for the cross-section, displacements and rotations. Reduced one-point
integration is used for economy, since this will yield a rank-sufficient
stiffness matrix for the element. Since the cross-sectional properties for
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Table 2.1
Summary of the NESSUS Element Library

P.STRS P.STRN AXSYM BRICK SHELL T. BEAM

ITYPE | 3 ¢ 11 1 30 7 1 75 1 98

NELCRD 1 2 ] 2 2 3 {3 1 [

NELNFR 1 2 12 ] 2 3 ] 6 |

NELNOD J 4 1 4 | 4 .8 1 4 ] 2

NELSTR 1 3 1 4 | 4 | 6 | 8 | 6

NELCHR ! 5 ] ) | ] | ] ] 5 l 5

NELINT ' 1 4 i | 4 ] 4 |8 | 4 l 11

NELLV | 3 | 3 | 3 13 | 4 i 3

NELLAY I R DU S N SR N ST N 1

NDI ) 12 | 3 | 3 L3 L 2 | 3

NSHEAR 11 - 1 1- - | 1 L3 ] 1 l 3 1

JLAW | 2 | 3 | 4 | . ) | 6 1 7

ITYPE Element type number.

NELCRD Number of coordinate data per node.

NELNFR Number of degrees-of-freedom per node.

NELNOD Number of nodes per element.

NELSTR Number of stress and strain components per node.

NELCHR Number of material property data for the element,

RELINT Number of ’‘full’ integration points per element.

NELLV Number of distributed load types per element.

NELLAY Number of layers of integration through the thickness of the
shell element. ‘

NDI Number of direct stress components.

NSHEAR Number of shear stress components.

JLAW Type of the constitutive equation.
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this element are defined in pre-integrated form, its use is restricted to
linear elastic problems.

In recent PSAM meetings a strong desire has been
expressed for the development of advanced element technology needed to address
specific SSME applications in an effective manner. Many of these applications
involve localized effects which cannot be captured using the classical plate
theories. Examples include strong curvature, strong thickness variations
or localized mechanical or thermal loading. In principle, continuum theory
will always be able to model the proper solution. However, regular
continuum elements lack the appropriate deformation modes to model
shell-1ike behavior in a satisfactory way. Recent developments in element
formulation suggest that it may be possible to construct continuum elements
with enhanced bending behavior that would perform well when degenerated in
one direction to form a shell-1ike element. The development of such an
element was proposed by MARC for implementation in the NESSUS code.

2.1.1.6 Solution Strategy and Algorithms

The use of FPI methods in probabilistic finfte element
analysis involves the repeated computation of the structural response for
small perturbations of the random parameters about a given deterministic
state. Probabilistic models of realistic structural systems can be quite
complex, requiring the analysis of large finite element models parameterized
by many random variables. The computational effort expended in the generation
of perturbed solutions for these models vastly exceeds that required for all
other phases in the analysis. Hence, the ability to efficiently compute
the response of the perturbed system is crucfal to the viability of the
method. -
For linear elastostatics, the basic perturbation problem
may be expressed as follows. Given the solution to the unperturbed set of
finite element equations :

Ku-=f ’ (1)
it is desirable to obtain the solution to the perturbed problem

a & -~

Ku=f (2)
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~ Wwhere
K=K+ dK

U=u+du ' (3)
f=f4+df

Substitution of these definitions into the equation for the
perturbed problem will yield

(K + dK)(u + du) = (f + df) | (4)
Kdus= (f+df) - (K+dK) u - dK du (5)
Kdu=f-Ku- dK du (6)

Several methods have been proposed for the solution of
the problem in this form. A first-order perturbation method may be obtained .
by neglecting the last term (second-order), and solving for a first-order
approximation to du. This approximation can be shown to correspond to the
first term in the Taylor series expansion for du. Higher-order
perturbation methods are obtained by carrying along additional terms in the
Taylor series expansion.

The perturbation strategy adopted in NESSUS/FEM 1s based
on the recovery of the higher-order terms by an iterative process. A suitable
algorithm is provided by the recursion form

K du{™1) o ¢ _ i (M) . 7)

M) | a(n) |, ga(nel) - @

This process is equivalent to a modified Newton
iteration, and can be shown to satisfy the appropriate consistency
condition. The stability of the algorithm will be discussed in Section
2.1.1.7 in some detail.
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Many advantages may be derived from adopting this
strategy. It should be noted that all computations with the perturbed system
can be performed at the element level, and only the resulting element internal
force vectors need be assembled into a global vector. This residual force
vector must be computed at every iteration step, and provides a direct measure
of the quality of the approximation that is used to establish convergence.
Furthermore, this approach eliminates the need to compute and store
explicit partial derivatives of the element stiffness and load vector, or
any assembled form of these quantities. This not only significantly
reduces data storage requirements, but also greatly simplifies the coding
and validation tasks. The perturbation of geometry and material data fis
made independent of the element formulation adopted, which allows simple
extension of the method to newer element technologies. The overall
efficiency of the method can easily be Justified on the basis of well-known
operation count statistics for large finite element problems.

Additional efficiency improvements are obtainable from
" recasting the perturbation problem as an iterative process. This allows the
implementation of a number of convergence acceleration methods for
jterative problems, such as the line search algorithm and quasi-Newton
fteration schemes. In particular, significant performance improvements
have been demonstrated with the use of either Davidon rank-one secant
Newton update or inverse BFGS rank-two update applied to the perturbed
elastostatic problem. The present implementation of the line search
algorithm does not appear to be very cost-efficient for 1inear elastostatic
problems. This is, in part, due to the fact that it has been implemented
as a truly nonlinear line search, since the final goals of the PSAM project
call for the extension of the perturbation aIgérithms to nonlinear
problems.

A similar perturbation algorithm for the symmetric
eigenproblem with iterative improvement also has been developed and
incorporated in NESSUS/FEM. This algorithm differs from earlier eigenproblem
perturbation methods by the fact that it has been developed from the start
with the intent to tackle realistic structural vibration problems. The
problem of properly splitting eigenvalue clusters in the spectrum of the
unperturbed problem was identified early on in the algorithm development. A
solution was developed, involving a reduced eigenproblem with the dimension of
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the multiplicity of eigenvalues in the cluster. Similar formulations
typically involve the solution of a larger eigenvalue problem, with dimensions
of at least the number of perturbed eigenvalues. An error estimate to account
for the effect of a truncated modal representation is also provided. The
final form of the algorithm is independent of the method used to obtain the
starting eigenpairs, and can be used with any of the modern algorithms for

the solution of large symmetric positive-definite eigenproblems.

These perturbation analysis algorithms have been
available in NESSUS/FEM since Version 1.0 and have been succeésfu]ly applied
to a broad class of linear problems. It is expected that much of the code
developed for the perturbation of linear elastostatics problems will be able
to handle weakly nonlinear situations with only minor modifications.

2.1.1.7 Stability Considerations

The iterative perturbation analysis algorithms available
in NESSUS have been successfully applied to a broad range of structural
problems over the past year. The experience acquired in this testing and
validation phase also identified a class of problems for which the iterative
process was observed to become unstable with seemingly small values of the
perturbation parameter. The problem was first encountered in the analysis
of validation problem #2, described in Section 4.0 of Volume III of the PSAM
First Year Progress Report. This problem involved the analysis of a thin
cantilever beam using bilinear Reissner-Mind1in shell elements (NESSUS
element 75) under bending. The stiffness equations for this problem are
poorly conditioned, as & result of the enforcement of the transverse shear
constraint in the thin limit of the Reissner-Mind1in theory. The problem
was observed to be particularly sensitive to geometry perturbations
involving changes in element length, which often resulted in loss of
stability of the iterative algorithm even for small elongations of the
mesh.

A detailed investigation into the nature of the problem
was undertaken at MARC, and the major findings are summarized in Appendix B to
this report. The investigation concentrated on the analysis of a simpler
model problem, involiving a mesh of linearly interpolated Timoshenko beam
elements. This is the one-dimensional analog of the Reissner-Mindlin plate
problem, and exhibits pathological behavior identical to that observed in
the plate problem, while offering a much simpler formulation and far more
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amenable to a detailed analysis. Early on in the course of the
investigation the problem was found to be governed by the characteristics
of the assembled stiffness equations. A von Neumann stability analysis of
the assembled equations at a typical internal node for the model problem
was performed, which provided closed-form expressions for the stability
1imit in the case of uniform mesh elongation. These stability 1imits were
found to accurately predict loss of stability for numerical experiments
involving both beam and shell element discretizations of the model problem.
These results can be used to estimate the stability limits for more general
beam and plate problems, providing an upper bond for the size of the
perturbation parameter that will preserve the stability of the algorithm.
In general, stability will present a concern for the

analysis of any problem involving some form of implicit constraint equations
in the underlying theory. Stability problems will typically arise whenever
geometry perturbations affecting these constraint equations are imposed on
the unperturbed problem. Such problems include the analysis of

0 Thin plates and shells allowing shear deformation

o Incompressible elasticity, e.g., rubber-l1ike materials

o Strongly anisotropic materials

o Deviatoric rate-independent plasticity

0 Incompressible Stokes and Navier-Stokes flow

Several of these problems are relevant to SSME

applications. It must be noted that alternative formulations based on a
Taylor series expansion about the unperturbed system are not immune to the
problem. This may be concluded by noting that the speed of convergence of the
iterative algorithm is closely related to the error associated with the
truncation of the Taylor series. The analysis of the general problem is
complicated by the fact that stability is often governed by the lowest
deformation modes present in the assembled stiffness equations. Thus, the
development of general closed-form results for unstructured, multi-dimensional
meshes subjected to non-uniform distortion does not appear to be practical.
However, the insight obtained from the analysis of simple model problems
can be used to develop "smart" algorithms capable of adaptively adjusting
the perturbation size in order to retain good convergence characteristics.
These stability considerations further emphasize the need to allow for a



reformulation af the deterministic probiem at a point sufficiently close to
the design paint to obtain a good representation of the 1imit surface
within the statrfiR ity bounds imposed by the algorithm.

2.1.1.8 Inelastic Algorithm Development

The iterative perturbation analysis algorithms developed

for the linear eNastostatic problem involve no assumptions on the linearity of
the problem, amd! ©only minor coding and data management modifications should be
necessary to extiend these algorithms to situations involving mild
nonlinearity. The perturbation database must be extended to include a record
of the nodal stwain histories, and the finite element code must be modified to
carry along im prerallel the incremental solution data for all perturbed
problems. Pertwa“bations must be allowed on additional types of variables,
such as the material's elastoplastic constants. This will involve extensions
to both the NESSIUS/PRE and NESSUS/FEM modules.

The extension of the perturbation algorithms in NESSUS/FEM to
inelastic problemms raises important issues, which will affect the development
of nonlinear algorithms for the remaining years of PFEM development. Version
1.1 of NESSUS/FEIM provides solution algorithms for deterministic linear
problems using efither a displacement-based or mixed iterative finite element
formulation. AR development of perturbation analysis algorithms to date has
been based am the displacement formulation. Implementation of the
displacement metihod for inelastic analysis will require changes to the
internal data stiorage in the code, in order to retain the element strain
history record & the integration points. Al1 data input and reporting of
strains and streesses as perceived by the user can still be performed on a
nodal basis. #&m alternate approach suggested by the NASA contract monitor
involves the mdtgption of the mixed finite element formulation for
probabilistic &walysis, in order to maintain the node-oriented internal data
storage curreatly implemented in the code. This approach would lend itself to
a somewhat more elegant implementation of some algorithms, but also involves
substantial risk :associated with the adoption of less mature finite element
technology. Befiere adopting the mixed approach for probabilistic finite
element analysis, the existing perturbation algorithms must be exercised and
tested with simgfe elastostatics problems using the mixed formulation. This
step is needed tio ensure that no unexpected problems arise from the use of the
current solutiam strategy with the mixed finite element formulation. If the
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results of this experiment are positive, then it will be reasonable to
consider proceeding with the mixed method for the development of inelastic
solution algorithms in NESSUS/FEM.

Further development of {inelastic algorithms for probabilistic
finite element analysis is awafting the outcome of the decision on the finite
element formulation to be pursued.

2.1.2 NESSUS/FPI Development
2.1.2.1 Eigenvalue Models for Non-normal Distributions

Eigenvalue models for normally distributed, correlated
variables (Reference [1]) have been used in the NESSUS code to solve problems
involving random fields such as pressure or temperature fields. The
NESSUS/PRE module is designed to generate uncorrelated variables based on
the covariance matrix of the dependent variables. This is described above
in Section 2.1.1.3. The reasons for using the eigenvalue models are:

1. Uncorrelated variables allow fast probability estimation
using the NESSUS/FPI module.

2. The number of the significant uncorrelated variables is
always less than the number of the correlated variables, and
therefore the eigenvalue model is able to reduce the dimension
of the random variables entering the perturbation analysis.

To extend the above method to problems fnvolving non-
normally distributed, correlated variables, a model has also been formulated
[2]. However, the new model is still under investigation and is not yet
included in the NESSUS code system. A summary of the method is given in this
section. An example involving a highly non-normally distributed variable
1s given to test the model. The results suggest that, in order to obtain
accurate transformed correlation coefficients, higher order terms in the
Taylor's series expansion that is used must be retained. Therefore, a more
accurate formula relative to the one derived in [2] has been derived and is
reviewed in this section. »

' The eigenvalue model for the non-normally distributed,
correlated variables requires two extra steps: the transformation of all
variables to the normal distribution space; and, the derivation of the
correlation coefficients of the transformed normally distributed variables.
The normalization process is defined in (9), '



30

P, (X1) = 04(uy) i=1,n (9)
where Fx (-) is the original marginal distribution of the random variable
i

X4, where ¢(-) is the normal CDF, and where uj is a standard normal
variate. Note that (9) defines a one-to-one mapping; therefore, X; may be
formulated using the inverse transformation:

X = By (0 0y)) | | (10)

The inverse CDF's, {.e., in'l(-) are available in closed form for such

distributions as the Wefbull and Type I extreme value distributions. Using
(10), the performance function becomes a function of Uj.

: We next consider the computation of the correlation
coefficients of the transformed variables. Consider two correlated random

variables, denoted as Xl and XZ' The correlation coefficients Py, x,. €an be
computed as 172
E[Xlle - E[XllE[XZI 1
Px. X, © a,0 . (11)
172 172 :
Define the transformation from X; to u; as
x1 = Ti(”i) i=1,2 (12)
and define
Eq. 11 may be expressed as
pxlxzoloz = E[H] - E[T]E[T,] o (14)
Using a series expansion method, it can be shown that
= o[Hyy + 5 (HioHai)] + L02H,, + H.O.T (15)
”Xlxzaloz PLA1L T 7 \Mi3f3g 2° 22 sl
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where higher order terms is denoted (HOT) and where

i+ alr, ot
HU'Q_iHT ._{113 (16)
aulau2 u=0 du1 du2 u=0

and where p is the correlation coefficient of the transformed variables
u; and u,. '

An approximation formula which includes Hij terms up to
{+J=8 has been derived earlier [2], but was later found to be insufficiently
accurate for very non-normally distributed functions, such as the uniform
distribution. To improve the accuracy of o, a more complete formula with
up to 12 terms in the series has been derived and is given in Table 2.2.

In [2], a procedure was formulated to compute H1j using a
" numerical method. The procedure was demonstrated by using two examples
involving lognormal and normal variables. It was found that the series
converges rapidly. However, it was not clear how the series would converge if
the random variables were strongly non-normally distributed. In the following
example a problem involving a uniformly distributed variable is tested to
provide information about the rate of convergence of the outlined
procedure. This experience is being used to guide the implementation of
the procedure into the NESSUS code.

Consider a case where one (say X;{) of the two random
variables is normally distributed; then

dx1 _

—d'q = 01 ' (17)

d"x1

——=0forn>1 (18)
n

du1
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The approximating series for computing the tranéformed
normal distribution correlation coefficient, o, may be derived as (up to the
twelfth-order term):

- B 1 1 1
X %,%2 "oy M1 *2M3 *g s v gty +
1 H,, + 1 H ]
382 M9 * 1830 "1.11
(19)

dx a3«
=0l 2+ 53—+ ..]
du, 2 .3 .
2 du u
2 2
is the original correlation coefficient.
Assume that X, is a uniformally distributed variable with
a density function defined as

=0

where °X1x2

(20)
f(xz) = 1 0 < Xz < 1

=0 otherwise

Using the normalization scheme given in [1], the relationship between Xo
and the standardized normal distribution function variable up is

X, = o(u,) (21)

where ¢(u,) is the standard normal COF. Eq. 21 is plotted in Fig. 2.10.

Note that a scale factor has been applied to X5 such that a linear

relationship with a slope of one in Fig. 2.10 represents a standard normal

distribution. Therefore, the uniform distribution, according to Fig. 2.10

behaves in a significantly non-normally distributed fashion for qul > 1.
Using the numerical algorithm from [1], thirteen sets of

data are obtained as follows in Table 2.3:
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Table 2.3

Results of Equivalent Normalization of Uniform Distribution

Set Uz XZ

1 -6 .990E-09

2 -5 .287E-06

3 -4 +316E-04

4 -3 .00135

5 -2 .00227

6 -1 .158

7 -0 .5

8 1 .841

9 2 977

10 3 .9986

11 q .999968

12 5 .999999713
13 6 .999999999

The next step 1s to construct a twelfth-order polynomial denoted as

12
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X, = 1 Aul ' (22) -

2 .o "2

The required derivatives for computing o are

d“x2
=A - nl! (23)

dul
2 u,
wheren=1, 3, 5, 7, 9, and 11.
By solving thirteen simultaneous linear equations, the
coefficients A, can be found. Using Eq. 23 and Eq. 19 the approximation
solution is

oy.y. = 1.362250[1. - 0.4380 + 0.2235
12 (24)

- 0.0871 + 0.0214 - 0.0024]
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The final results are as follows

o (Sixth-order) =0.9345 Py X

172
o (Eighth-order) = 1.051 X X
172 (25)
p (Tenth-order) = 1.020 pxlx
2
p (Twelfth-order) = 1.023 ox. X
172
The exact solution for this particular case is available [3] and is
o (Exact) = 1.023 Py X (26)

172

Eqs. 25 and 26 show that the Taylor's series from (24) converges quite
slowly. It needs to be pointed out that this example is considered to be
an extreme case to test the robustness of the algorithm.
2.1.2.2 FPI Validation Studies

The original FPI (Fast Probability Integration) code
using an algorithm developed by Wu [4] was modified to become the NESSUS/FPI
code. In [4], the performance of the algorithm is assessed by six examples;
some examples are considered the worst possible cases. The results indicate
that the algorithm is able to provide accurate or reasonably good point
probability estimates. In all cases, the results are significantly better
than a widely-used FPI method: the first-order reliability analysis [5].

Chang [6] has investigated the performance (accuracy and
efficiency) of the FPI algorithm for computing structural reliability.
Thirteen examples have been used to test the FPI accuracy. Many of the
examples had nonlinear performance functions with non-normal random
variables. The maximum number of random variables in the examples fis
twenty. The results indicate that the FPI algorithm provide good probability
estimates. The errors in the point probability estimates are less than or
near 5% in twelve examples which are typical of mechanical design problems.
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The only example which results in large error is the same
problem investigated in Reference [4]. The performance function of the
example is a linear combination of the identical and independent random
variables. Each variable is chi-square distributed with one degree of
freedom. The distribution is apparently highly non-normal. Its density
function has a shape similar to an exponential density function (1.e., Aexp(-
Ax) where A is a positive constant) which has only one tail. It seems obvious
that this distribution can not be fitted well by a symmetric bell-shaped
normal curve. This test example indicates that the accuracy of the current
NESSUS/FPI code is 1imited by the normality of the random variables.

However, in probabilistic structural analysis, non-normal engineering
variables are commonly modeled using the standard distributions such as the
Tognormal and the extreme value distributions. Using the FPI algorithm,
these distributions can usually be fitted very well (in the least-squares
sense) by the three-parameter normal distributions.

The FPI code has also been compared with a code based on
' the second order reliability methods [7]. Three examples taken from Chang's
report were tested. The comparison of computed probability estimates suggest
that there are no significant differences in accuracy. Thé computational
efficiencies were also compared by assuming that the combutationa]
efficiency for the first-order reliability analysis should be approximately
equal using the two codes.

The comparison of the computer time seems to confirm
that, at least for linear performance functions, NESSUS/FPI is faster than the
second order reliability methods, especially for a large number of variables
(in the test examples, the maximum number of random variables, N, is 20). The
reason 1s believed to be that the second order methods needs to compute all
the second order derivatives of the performance function in the transformed
"standardized normal (u) space", whereas the NESSUS/FPI algorithm considers
only part of the second order derivatives of the performance function in
the X space. The advantage of using the NESSUS/FPI algorithm is
significant, since the computational effort required by the NESSUS/FPI is
of order N, while that required by the second order methods are of order
N2, Moreover, since it is very inefficient to establish a "complete"
quadratic response function in a typical NESSUS analysis, 1t seems more
1ikely that the established response function will be either 1inear or
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incomplete quadratic. In such cases, the NESSUS/FPI algorithm is
particularly efficient because i1t does not require the computation of the
second order derivative.

The NESSUS/FPI algorithm has also been used to
demonstrate how to compute the probability of instability of a dynamic system
{8]. The system is represented by an n-th order linear differential
equation. By assuming a solution of the form exp(st), a characteristic
polynomial equation is obtained where the coefficient are random functions of
the random variables. A root s with a positive real part means that exp(st)
becomes unbounded and the system is unstable. A procedure based on the FPI
algorithm is developed and demonstrated using an example involves a six
degree polynomial with two random variables. For comparison purposes, a
Monte Carlo solution is obtained. The result shows that FPI is accurate
and is far more efficient than the simulation method. ,

Other NESSUS/FPI validation exercises include the
solution of the NESSUS validation test cases 1 and 2 in which good agreement
between FPI and Monte Carlo are obtafined.

A general conclusion drawn from the results of the
numerous examples is that the NESSUS/FPI is consistently able to provide
accurate results so long as the expansion point is the most probable point.
When the most probable point can be Tocated (by iteration), good results can
usually be expected even with 1inear approximation of the performance
function.

2.1.2.3 FPI Accuracy/Improvement Studies

A number of studies on the FPI algorithm were conducted
at the University of Arizona. The studies focused on approximation functions
within NESSUS/FPI which have been suspected of producing errors in the
resulting probability estimates. Modifications to NESSUS/FPI have been made
to improve the performance of the code and include:

1. A new gamma function has been introduced. This function
representation has about eight significant figures for accuracy

and is a significant improvement over the polynomial
approximation previously used.

2. Changes were made in calculations of the extreme value
distribution (EVD) parameters to provide ten-place accuracy.
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3. The polynomial approximation to the inverse normal CDF has
been replaced by the secant method with a significant
improvement in accuracy.

4. A1l distribution parameters are now computed at the
beginning of the program instead of within the subroutines.

5. The secant method is used to compute the Weibull shape
parameter. Using this method and the new gamma function should
improve accuracy of both Weibull parameters.

Details of these changes are reported in Appendix C.

Comparison of the old and new code for NESSUS/FPI showed
small changes 1n the results, generally less than 5% for all thirteen test
examples. However, the new code accuracy has been achieved with no
significant loss of efficiency and is, therefore, being incorporated in the
next release of NESSUS/FPI.

In addition to the above numerical improvements, there
are three new distributions which have been added to NESSUS/FPI. The new
distributions are:

1. The Frechet distribution Type 2 asymptotic distribution of
extreme values from an initial lognormal distribution and, in

general, an initial distribution having a po1ynomia1 tail in the
direction of the extreme.

2. Truncated Weibull distribution.
3. Truncated normal distribution.

The truncated distributions are included for modeling distributions of
material axes for the turbine blade verification problem. Other
distributions already in the code are the normal, lognormal, Weibull, Type
1 extreme value, maximum entropy, chi-square, and NESSUS. The NESSUS
distribution is a polynomial of a normally distributed variable.

2.1.2.4 Confidence Band Estimation

The basic goal of confidence band estimation, in the

context of the NESSUS analysis, is to quantify the confidence on the
accuracies of the probability estimates for the response functions. The basic
assumption for the methods 1s that the response functions are derived from the
NESSUS perturbation data base. The approach is to treat the distribution
parameters of the input random variables as random variables, and then
create the COF of the response function CDF. This strategy is the essence
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of the Beysian approach to parameter estimation. Four approximation
methods are identified for estimating the confidence (or error) band of the
cumulative distribution function of the response function. The most
suitable one is identified and included in the new version of the
NESSUS/FPI code.

Let Z denote the response variable, and Z(X) denote the
response function where X is a vector of the input independent variables. In
the NESSUS/FPI, Z(X) is a polynomial function:

N N

I=7(X) =a,+ 1 aXy +

2
b, X (27)
121 it

i=1

where N is the number of independent random variables. In general, several
polynomial equations may be required to ensure sufficient accuracy of the
function over a wide range of Z. Ideally, one polynomial should be
established for a selected Z value.

The basic assumption in the response function for the
confidence interval estimation is that for a given Z, the best estimate Z(X)
(derived using the best estimates statistics'of X) remains valid within the
confidence band. In general, 2(X) is different' for different distribution

- parameters set because the most probable point, which is used to define

Z(X), is a function of the distributions. However, the assumption is valid
when Z(X) is actually a first or second degree polynomial. For highly
nonlinear Z(X) function, the assumption is a reasonable one so long as the
variabilities of the significant random variables are not very large.

There are two basic types of uncertainties in a
NESSUS/FPI-generated response function: (1) physical uncertainty and (2) model
uncertainty. Physical uncertainty is the uncertainty associated with physical
phenomena which are inherently random. In the NESSUS analysis, this
uncertainty is accounted for by treating the input varfables as random
variables or random fields. Model uncertainty includes parameter uncertainty,
uncertainty in the statistical distribution model, response function model
error, etc. The approach adopted in this study concentrates on the
variabilities of the input variables.

Assume that X is a normally distributed random variable
with mean y and standard o deviation. Given a sample, n, the sample mean, X,
is a normal variable with mean and standard deviation of
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requires major code modification and developement effort. Method 3 is
accurate for large samples, but the full simulation is extremely ‘
inefficient. Method 4 is accurate and is consistent with the current
NESSUS/FPI approach, i.e., the COF of Z(X) is computed by using the FPI
method for a given set of statistical parameters. In terms of the
computational efficiency, Method 4 {s inefficient relative to Methods 1 and
2 but s much faster than Method 3. Overall, Method 4 was considered
accurate with satisfactory efficiency, therefore, it was selected and
" has been incorporated in the NESSUS/FPI code.

An example has been taken from that proposed in Appendix D as a means
to test the confidence band estimation algorithm in the NESSUS/FPI code.
The response function Z is a function of two normal variables X and Y,

Z=X-Y

The statistics are,

For X For Y
n=20 n=20
X =10 Y =5
Sx‘Z SY=1

The sample means and the sample standard deviations are defined as the best
estimates. Using Eqns. 28 and 29, the COVs for the means of both X and Y
are 0.0447; the COVs for the standard deviations of both X and Y are 0.162.
By entering these parameters into the NESSUS/FPI, the 90% and 95%
confidence bands of the CDF of Z were generated. The result is shown in
Fig. 2.11. The Monte Carlo sample size is 5,000.
2.1.2.5 Monte Carlo Methods

Monte Carlo simulation has been usually considered to be a
last resort for solving a major simulation problem because of its high cost
for accurate results, especially in the tails of the distributions. However,
recent developments of new and efficient algorithms have made Monte Carlo
more attractive,.

A study of several Monte Carlo simulation algorithms has
been conducted at the University of Arizona for the PSAM project. Two
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ux =y S=g9//n (28)
The variable (n-1) 52/02 has a chi-square distribution with n-1 degree of
freedom. If this chi-square distribution is approximated by a lognormal, then
the distribution of s will be a lognormal. The statistic of s can be
approximated as

s o= o/ [2(n-1)] ' (29)

For the NESSUS/FPI confidence band estimation, we assume
that each X;(i=1,N) is characterized by its mean and standard deviation. We
further assume that the statistical distribution is normal for the mean, and
1s lognormal for the sample standard deviation. These assumptions about the
statistical distributions of the parameters are exact only when X is normal.
The actual distributions usually do not follow available standard
distributions and the COF's cannot be defined in closed forms.

The required input data for the confidence band
estimation are the statistics (the means and the COVs (coefficient of
variation = standard deviation/mean)) for the means and the standard
deviations of all X;j's. Note that the input statistics may be estimated by
using Eqs. 28 and 29 where the actual statistics may be replaced by sample
statistics. However, the statistics may also be estimated using other
statistical methods or engineering judgement. This input format is more
flexible since it does not require that the sample sizes be defined. However,
the input statistics must be prepared before the estimation process.

Four methods are considered:
1. First Order Error Bounds
Assume that Z(X) 1s linear and each X; 1s normally distributed. For
each Z(X), there is a best-estimate most probable point of X. The best
estimate CDF of Xy, denoted as Fys 1s determined using the most probable
point for each Xj. At Fy, X;j can be written in terms of the mean and
standard deviation by inverting the CDF,

Kow o R vy (30)
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where 9y and u; are random variables. Upon substitution of each Xj into Eq.-
30, Z(X) can be expressed in terms of Z(u,q). ,

By further assuming that Z(X) has a normal or a lognormatl
distribution, closed form solutions for the confidence bounds were derived
by Wirsching and are included in Appendix D.

2. FPI algorithm
Assume that Z(X) is linear. The CDF of Z(X) = z, in terms of the
standard nprma1 variate, u, can be formulated as

a, + I3 uy
Uu=——>>— (31)

/ (2°1°1)
where My and oy are the equivalent normal parameters of X; based on the
Rackwitz-Fiessler algorithm [9]. Eq. 5 is a safety index formulation
based on the first order reliability method.

Note that the equivalent normal parameters are functions of the CDF,
F(X), the PDF (probability density function), f(X), and the most probable
point X;. Let

8; = (uj04) S (32)

Because F(x) and f(x) are functions of ¢, therefore, u can be expressed as

u = function (8) (33)
The 1imit state or performance function can be formulated as

9(2) =u - uo (34)

The following is a proposed FPI iteration algorithm for estimating the CDF of
u for a selected response function value Z = z:

1. Select a u,.
2. Guess the design point of the distribution parameters, o.

3. Compute the equivalent normal parameters of the random
variables, 6.
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4. Define the distributions of X using the most probable point
Of 3. )

. Guess the most probable point of the basic variable X.

5

6. Compute equivalent normal parameters for non-normal X.

7. Compute the most probable point of X and the CDF of Z(X) = z
8

. Go to step 3; repeat until the most probable point of X or
the CDF of Z(X) is stabilized.

9. Compute the most probable point of e and the CDF of g () = 0

10. Go to step 2; repeat until the most probable point of ¢ or
the COF of g(e)= 0 is stabilized. -
Note that the above procedure requires nested iteration loops. Step 3 to
step 8 constitute the inner FPI loop for a selected o set. Steps 2, 9 and
10 constitute the outer loop for finding the most 1ikely e set.
3. "Full" Monte Carlo Simulation
This method is conceptually more straight-forward. It requires the
following steps:

1. Generate samples of ¢ sets, gj, j=1,J

2. For each o, generate a set of Xk, k=1,K

3. Compute, using Xj, the response function value, Z,, k = 1,K
4

. For each 83 compute the COF of Z(X)=z, denoted as (CDF)j,
j=1,

5. Using samples of (CDF), construct COF of u.

This last procedure is expected to be extremely time-consuming because it
requires the generation of "J times K" samples of Z(X) values.

4. Mixed Approach - Combination of Monte Carlo and FPI

This approach combines the above methods (2) and (3). The difference
between this approach and the previous approach (Method 3) is that after a
set of Xj is generated, the FPI routine is used to compute each (CDF)i.

The methods can now be compared. Method 1 captures the essence of
statistical uncertainty and is the most efficient. However, the accuracy
of Method 1 is limited by the distributional assumptions. Further
improvement is needed for this fast algorithm. Method 2 has the potential
to be both fast and accurate, however, it is the most complicated and
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computer programs based on the conventional Monte Carlo algorithm and one
based on variance reduction using antithetic variables were written at the
University of Arizona. Other efficient Monte Carlo schemes are still being
evaluated. The work to date is summarized in Appendix E.

'2.1.2.6 Integration with NESSUS/FEM

This section summarizes the study of an FPI iteration
procedure which was intended to be used to integrate the FPI and the FEM
modules. The procedure was used successfully to solve several selected
problems. At the end period of this study, however, a new and potentially
more efficient method was formulated which seems to be most suitable for
constructing the COF of a response function. The newly-developed method and
the iteration procedure are summarized in the next section (2.1.2.7). The
procedure described in the present section is useful for computing a point
COF. For creating the entire CDF, the present procedure may ultimately be
replaced by the new procedure. However, the new procedure is based on the
present study, and many key concepts discussed in this section remain valid
for the new procedure.

The integration of the NESSUS/FPI and the NESSUS/FEM 1is
based on the concept of successive linear/quadratic approximation algorithm
which was identified in the first year of this project [5]. The goal is to
expand or perturb the performance function about the most probable point.
Note that in the field of structural reliability analysis, where the goal is
to find the probability of failure estimate, the most probable point is called
the "design point". The algorithm which is summarized in the following has
been used to test several examples with success.

The iterative algorithm has been established as follows:

1. Identify critical dependent variable (stress,frequency,...)

2. Select values for dependent variable. (e.g., mean, mean +
10% of mean)

3. Using the NESSUS/FEM module, compute the perturbation
solutions about an initial guessing most probable point.
Initially this can be chosen as the mean values. However, a
good initial guess of the most probable point will accelerate
the iteration procedure.

4, Establish linear/quadratic response surface from the
perturbation solutions using the least-squares method.
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5. Compute the most probable point, using the NESSUS/FPI, for
the selected value of dependent variable.

6. Compute the CDF'and evaluate accuracy (based on the
successive CDF values or the most probable point values).

7. Use the new most probable point and go to step 3, until the
solution converges.
Experience with this algorithm has indicated that the solution can usually
be found in about three jterations.

An example is now presented to 11lustrate the above
iteration procedure for integrating FEM with FPI. The example is a simplified
version of the NESSUS validation test case 2 from the first year annual
report. The finite element model is 1llustrated in Fig. 2.12. There were
initially ten random variables: five correlated loadings, width, length,
thickness, base spring and modulus of elasticity. By assuming that the width
is deterministic, the "exact" root stress becomes:

S = LP/t’ (35)

in which P is a load random variable; L is the length and t is the
thickness. The mean value of S is approximately 3500 psi.
' In order to illustrate more clearly the iteration
procedure, it is assumed further that t is a deterministic variable and L an P
are normally distributed. Note that none of the above assumptions is
required for the NESSUS solution.

Define the "reduced variables" of L and P as

”i = (L - Lyean)/Lstd. dev.
(36)

Uy = (P - Proan)/Pstq. dev.

Using Eq. 36, L and P can be expressed as functions of u; and uy,
respectively. Substituting L and P into (35), one can plot the contours of
constant stress (iso-stress)in a two dimensional u space as shown in Fig.
2.13. The reason for using the u coordinate system is that the joint
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probability density function is rotationally symmetric. The most probable
point is, therefore, easily identified as the Point on a iso-stress curve
which is nearest to the origin.

The problem 1s defined as follows: Find the most probab]e point (and
the COF) for S, = 4500 psi by starting at Sy = 3500 psi. Fig. 2.13 shows
the result of the first iteration. Initially the linear approximation of §
is based on the mean values of P and L which corresponds to the origin. A

“predicted" iso-stress curve (S, = 4500 psi) can be defined using the
mean-derived linear equation. The predicted SZ curve, whichris parallel to
the approximated S; curve, deviates from the exact Sy curve because S 1is
actually a nonlinear function of P and L. However, this first iteration
leads one to a region close to the exact most probable point. Using the
predicted most probable point as a new expansion point, a second iteration
results in an accurate prediction of the most probable point as shown 1in
Fig. 2.14. No more iteration is required.

For S2 > 4500 psi, the volume under the joint probability density
function surface is concentrated near the most probable point. The first
order reliability analysis gives the following result:

P(S > 4500 psi) = ¢(- 8) (37)

where g is the minimum distance defined by the most probable point.

The above procedure can be applied to several values of S in order to
eatablish the entire CDF. In the following, the procedure will be applied
to integrate the FPI and the FEM. The test problem is the NESSUS
validation test case two of which the width is assumed to be deterministic.
The results of the first iterations at three stress levels (2600, 3500 and
5400 psi) are shown in Fig. 2.15.

The purpose of Fig. 2.15 is to show the algorithm for integrating the
NESSUS/FEM and the NESSUS/FPI. The finfte element model consists of twenty
plate elements (NESSUS element 75). The difference between the analytical
and the NESSUS solutions is about 3%. In order to show the effect of
successive linear approximation, a “"calibrated exact" COF is used to match
the mean solutions.

The first perturbation was taken about the mean values of the
independent variables. Two more FEM perturbations were taken about S =
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2600 and S = 3500 using the predicted most probable points. It is shown
that the CDF values are accurate “locally' around the approximation
points. _ _

Figure 2.16 shows the result of an analysis for the tip displacement of
the same cantilever beam. The goal was to compute the COF at 1.2 inches.
The result of the first iteration indicates a significant improvement at
the region around 1.2 inches.

It should be noted the above results were obtained using “"small*
perturbations (0.05 or 0.1 standard deviation for the independent random
variables). The reason was to estimate the first order sensitivities more
efficiently. It is noted also that the update of the most probable points
in the NESSUS/FEM input data deck were done manually. The updated
“correlated" nodal loads were being computed using the most probable point
values of the "uncorrelated" loads (which means that the eigenvectors
generated using the NESSUS/PRE module must be used to update the NESSUS/FEM
data). This computational procedure needs to be considered carefully in
designing the user-friendly expert system - the NESSUS/EXPERT module.

2.1.2.7 A New CDF Estimation Method
This section summarizes a new CDF estimation
method. This method, if proved to be more effective for estimating the COF of
the response function, will replace the one described in the previous section
(2.1.2.6). However, since the new method was developed in the last period of
the second year PSAM efforts, further detailed study of the method is required
to validate the method. A preliminary discussion on the method is given in '
Appendix F where the formulation of the method and a simple example are
included. By using a procedure which corrects the error of the response
function at the most probable point, it is shown that the new procedure has
the potential to significantly improve the NESSUS solution efficiency by
reducing the requirements on the perturbation solutions.
The procedure based on the new method for integrating the
NESSUS/FEM and the NESSUS/FPI modules is as follows:
1. Construct first (can be extended to second) order
approximation of the response function Z(X) about the mean

values. NESSUS/FEM module {is used to generate response
function sensitivities or perturbation solutions.

2. The reponse function is established using the least-squares
routine in the NESSUS/FPI.
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3. Using the response function of step 2, a COF can be
constructed. (This COF is, in general, not sufficiently
accurate at the tail regions of the distribution.)

4, Select a CDF value from the result of step 3; find the
corresponding "predicted" response value, Zp.
5. At = Zp. compute the most probable values of X, Xp, using

the NESSUS/FPI module.

6. Using the NESSUS/FEM, compute the "exact" response function
value, Z,, at the most probable point, Xp. Z, s the

"corrected" value for the selected CDF value defined in step 4.

7. Compare Z, and Zp. If the difference is small (say, less

than 20 %) go to step 3 and select another probability level.

If the difference is large, go to step 1 and replace the mean

values of X by the Xp values.
The significant difference between the present procedure and the one
presented in the previous section is that the present procedure fixes a CDF
value and looks for the accurate corresponding response function value,
~ whereas in the previous procedure, a response function value is fixed and
the CDF value is found using an iteration procedure. Thus, the present
procedure relies more on the additional deterministic solutions while the
previous procedure relies heavily on the additional sensitivity analyses.
Since the sensitivity analyses require more computational efforts than the
deterministic analyses, it seems resonable to expect that the new procedure
will be more efficient.

2.1.2.8 NESSUS/FPI Code Validation Studies
A test plan for validating the first year

probabilistic finite element code was included in the First Year Annual Report
(Vol. III, Section 4); It consisted of nine validation problems which were
designed to test a variety of capabilities of the NESSUS code. The exact
solutions, in terms of the probability distributions or the probability of
exceedance, have been obtained for the first five validation problems. The
results which are summarized in the following are presented in a format
compatible with the NESSUS/FPI output. "Exact" solutions are obtained using
the Monte Carlo simulation if no closed form solution is available. These
exact solutions are to be compared with the NESSUS solution to validate the
code as well as the solution algorithm (i.e., FPI iteration algorithm).
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The exact solution for the validation problem 1 was
included in the First Year Annual Report. The ‘problem addressed is a
cantilever beam subjected to static loadings, P;(1=1,5) (see Fig. 2.17). The
Toadings are correlated random variables. Other random variables include
Young's modulus, length, thickness, width, base spring and yield strength.
The expected output of the NESSUS solution include the CDFs of the maximum
stress and the tip displacement, and the probability that the stress will
exceed the yield strength. The type of finite element used in NESSUS is
beam element 98. :
Problem 2 is similar to problem 1 except that the plate
element is used and the thickness of the beam is reduced. Because of the
reduced thickness, the nodal loads were changed from 20 1bs to 0.1 1bs. Figs.
2.18 and 2.19 summarize the results of the CDF of the maximum stress, the CDF
of the tip displacement and the probability that the stress exceeds the yield
strength. '

The goal of the validation problem 3 is to validate the
NESSUS eigenvalue solution algorithms. The cantilever beam defined in problem
1 is used again. The response functions tested are the first three bending
frequencies in each lateral direction. The analytical solutions for the
frequencies in the X and Z directions modes were used to derive the exact
COFs. Figure 2.20 and Table 2.4 summarize the results for the X direction;
Fig. 2.21 and Table 2.5 summarize the result for the Z direction.

Validation problems 4 and 5 addressed a rotating beam as
{1lustrated in Fig. 2.22. The random variables are: mass density, length,
Young's modulus, thickness and width. Problem 4 tests the beam element, and
problem 5 tests the plate element. The response function tested are the
tip axial displacement and the first bending frequency 1n the Z direction.
The analytical solutions are the same for both problems. In the original
test plan, the beam was fixed at the rotation center. To represent a
turbine blade configuration more closely, the inner radfus (measured from
the center of rotation to the "fixed" end of the beam) was defined to be
4.237 inches. Analytical solutions were revised and used to generate exact
solutions using Monte Carlo simulatfon. Figures 2.23 and 2.24 summarize the
results for the tip displacement and the fundamental bending frequency.

The NESSUS code validation is still in progress, and MARC
will run the NESSUS/FPI code and compare results with these "exact"



57

Weag JIA3||IUR) ® JO LOLILUL IS0 LBPOW £1°2 "Di4

Buradg uorsao) © Bulsn pajapon |\



(uawadetdsig dj) jo 3g) 39ex3)
2 9s®) 1s3] uojjepiiep g1°Z *byg

(000'001)NOUVINIS [
(S3IHONI) ININIOVIASIA
¥l rAd W 1 80 9°0
1 1 1 ] i 1 1 ] 1 1

S890868°2 92€S¥S° 1

8EY62Y 2 6689SE T

B2T08L°T L¥Y99T1°1

L6L20°T 9¥0L.L6°'0

802ETT 0 029.8L°0

SCEO°T- ¥6186S°0 s
c¥809°2- L9.80¥Y 0O

S¥92°y- 1¥%E612°0

n

Z

S0¥2°0 * AOD J
€9681°0 'Pag

29.8L°0 uwey

8.89.°0 UeTpon

](!doZ)J.NOS/ 1 =(n)p =ANG0Q0d SARDINWND “BIDUDA IOULOU POZ|RIOPUDIS=N

(n) uonduNg UOKINGISIQ PARDINWNYD

"

goo’do‘ddddddg
JINTMN~O

Sg71 10 = d i1 Caasese

58

NP(ZeeNeS 0-)dxe



59

(ssa43s *xew 40 400 30Px3).
2 9s®) 3153L uo|ePLRA 61°Z "By

(co0’00L)NOUVINNIS O

(1sM) ssaus
(spuosnoy))
S'S S¥ Xy Sz Sl
|| 1 1 1 1 1 1 1
¥G2€02°€ 269 6699
1L£56S°2 828° 0919
$8L098°T €20°229¥ | B
LBLLOO T 612 °€80¥ \\\
T10690°0 STV ¥¥SE J
95810 T- 119 °S00€
88TL2°2- L0B 99¥2 -
¥9S¥L°€- 8261 y
n A \
102S1°0 "A0D
8 8ES ‘'Pas \\n« B
¥ ¥¥Se uweR
2°Y0SE ueTpoy
e
" ’ -
[~ Z8Z0000000 &= ]
g
A W oF
- S0 0
CLv@0 ) L —
_w\ $Z..8°0 z
S9966 0 Y
‘0= 101 £6688086-0 4
Wml_ _ O = & \‘?Ul SARDINUNG

(000°000°‘T=})
9T10000°0
(8 > ¥) qoad

]'(:d.z)mos/x (M)} =AHIG00Ld SARDIKLND “BIOLIDA JOULIOU POZIRIOPUTIE=N

NP(ZasNeG 0—)dx0

w

(n) wonosung uopNQS|a PARDINWNYD



60

(*410 X-/+) sajousnbauy jo S,30) 30ex3)
£ 9se) 3s3| uoijepiieA 02°Z "614

PO PIg —— ®poON pug OPON 38| —r
(93s/avy) AONINDIN4
(spuosnoy))

91 ¥t A\ ol 8 9 " z 0
l 1 1 . 1 1 1 1 1 1 1 1 | i
£82000000°0 . §—

y \:w_a....m mm
i I i
nmnm m.
ipEme :
(g = spoynuny A

o

[(0e2) 05 /1 =(n =Aaoacsg sanoINWND “$10p0A ULIU PeTIRILPUDYE-N

P(ZeaNeGB-Piéxs

(n) uopdung uopNqIsIg SARDINWNYD



61

Table 2.4

Validation Case 3 Cantilever Beam Sratura1 Frequency)
X Dir. (Horizontal

Median Mean Std.
1st Mode 508.04 511.4438 = 59.28826
2nd Mode 3233 3254.661 377.2911
3rd Mode 8905.16 8964.824 1039.232
w(rad/sec) U1 us w(rad/sec) u, uj
300 -4,56199 2567.145 -1.99717
315 -4.13945 2695.502 -1.57464
330.75 -3.71692 2830.277 -1.15211
347.2875 -3.29439 2971.791 -0.72958
364.6518 -2.87186 3120.380 -0.30705
382.8844 -2.44933 3276.399 0.115481
402.0286 -2.02680 3440.219 0.538013
. 422.1301 -1.60426 3612.230 0.960544
443,2366 -1.18173 3792.842 1.383076
465.3984 -0.75920 3982.484 1.805608
488.6683 -0.33667 4181.608 . 2.228140
513.1018 0.085857 4390.689 2.650671
538.7568 0.508389 4610.223 3.073203
565.6947 0.930921 4840.734 3.495735
593.9794 1.353453 5082.771 3.918267 -4.85640
623.6784 1.775984 5336.910 4.340798 -4.43387
654.8623 - 2.198516 5603.755 4,763330 -4.01134
687.6054 2.621048 5883.943 -3.58881
721.9857 3.043580 6178.140 -3.16627
758.0850 3.466111 6487.047 -2.74374
795.9893 3.888643 6811.400 -2.32121
835.7887 4.311175 7151.970 -1.89868
877.5782 4.733707 ' 7509.568 ~1.47615
1824.422 -4.95489 7885.047 -1.05362
1915.643 -4,53236 8279.299 -0.63108
2011.425 -4.10983 8693.264 -0.20855
2111.996 -3.68730 9127.927 0.213974
2217.596 -3.26477 9584.324 0.636505
2328.476 -2.84224 10063.54 1.059037
2444.900 -2.41970 10566.71 1.481569
11095.05 1.904101
11649.80 2.326632
12232.29 2.749164
12843.91 3.171696
13486.10 3.594228
14160.41 4.016759
14868.43 4.439291
15611.85 4.861823
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Table 2.5

Validation Case 3 Cantilever Beam (Natural Frequency)
Z Dir. (Horizontal)

Median Mean Std
1st Mode 497.9 501.2359 58.10493
2nd Mode 3168.5 3189,728 369.7639
3rd Mode - 8727.4 8785.873 1018.487
w(rad/sec) Uy Uy w(rad/sec) up uz
300 -4.38739 2830.277 -0.97759
315 -3.96486 2971.791 -0.55506
330.75 -3.54233 3120.380 -0.13252
347.2875 -3.11979 3276.399 0.290003
364.6518 -2.69726 3440.219 0.712534
382.8844 -2.27473 3612.230 1.135066
402.0286 -1.85220 3792.842 1.557598
422.1301 -1.42967 3982.484 1.980130
443.2366 -1.00714 4181.608 2.402661
465.3984 -0.58460 4390.689 2.825193
488.6683 -0.16207 4610.223 3.247725
513.1018 0.260455 4840.734 3.670257
538.7568 0.682986 5082.771 4.092788 -4.68178
565.6947 1.105518 5336.910 4,515320 -4.25925
593.9794 1.528050 5603.755 4.937852 -3.83672
623.6784 1.950582 5883.943 ' -3.41419
654.8623 2.373114 6178.140 -2,99166
687.6054 2.795645 6487.047 -2.56912
712.9857 3.218177 6811.400 -2.14659
758.0850 3.640709 7151.970 -1.72406
795.9893 4.063241 7509.568 -1.30153
835.7887 4.485772 7885.047 -0.87900
877.5782 4.908304 8279.299 -0.45647
1824.422 -4.78037 8693.264 -0.03393
1915.643 -4.35784 9127.927 0.388592
2011.425 -3.93531 9584.324 0.811124
2111.996 -3.51278 10063.54 1.233656
2217.596 -3.09025 10566.71 1.656187
2328.476 -2.66771 11095.05 2.078719
2444.900 -2.24518 11649.80 2.501251
2567.145 -1.82265 12232.29 2.923783
2695.502 -1.40012 12843.91 3.346314
13486.10 3.768846
14160.41 4.191378
14868.43 4.613910
15611.85 5.036441
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solutions. To date these validation problems have been used to uncover
several program bugs, to gain experiences for incorporating user-friendly
interfaces, and to lead to new solution strategies.

The validation of problem 1 has raised an {ssue regarding
the random variables data input structure. The type of finite element used in
this problem is Timoshenko beam element (NESSUS element type 98). The random
variables include thickness, t, and width, w, among others. The first-year
NESSUS code defines the beam section using the area, A, and the area moment
of inertias Ix and Iy. This format is not proper because A, Ix'and Iy are
correlated depending on the shape of the beam sections. Conseqently, the
independent perturbations of w and t are {impossible. To correct the
dependency problems requires that the NESSUS/FEM code use "basic varfables"

w and t as input data. This strategy can be applied to other problems
involving dependent variables.

Pending implementation of t and w as random variables,
problem 1, with w and t as deterministic values, was used to validate other
capabilities of the code. Modal frequencies, stress and displacement
solutions were obtained and compared well with the analytical solutions. The
perturbation solutions were not obtained, however, pending the code
modification of the input structure.

For the validation problem 2, perturbation convergence
instability has been observed for the width, w. In order to obtain a complete
perturbation déta base and to accelerate the validation process, w was
temporarily treated as a determin{stic value. The validation study of this
slightly modified problem 2 has resulted in the successful integration of the
NESSUS modules (PRE,FEM and FPI), using a successive linear approximation
algorithm (Section 2.1.2.6). The study of the FPI iteration procedure for
this problem has also led to a new and potentially more efficient solution
strategy for estimating COF (Section 2.1.2.7).

A validation problem not included in the first-year plan
is a simple model simulating a turbine blade. The goal is to validate the
capability of the code to treat the material axes as random variables. The
model consists of four solid elements (NESSUS element type 75). The material
has anisotropic property with one material axis modeled as a random variable.
Perturbation results for the first two modal frequencies were obtained to
estimate the CDFs using the NESSUS/FPI. Analytical solutions for this test
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case is not available. However, the validation results were Judged
reasonable based on the information of the resulting means and standard
deviations of the natural frequencies. A data input limitation was
identified in that the material property (D) matrix defined in the FEM
input data is deterministic. That is, the material properties such as the
Young's modulus and the Poisson's ratio cannot be defined as random
variables. It appears that code modification is necessary to solve the
problem. ' - T T T _

MARC has now completed the perturbation analysis for the
validation problems 1, 3 and 5. New CDF estimation procedure (Section
2.1.2.7) will be used to continue the validation of the NESSUS modules and the
solution procedure.

2.1.3 NESSUS/EXPERT Development
2.1.3.1 Approach

The goal of the expert user interface is to provide a
flexible, user-friendly interface to the NESSUS/FEM and NESSUS/FPI codes.
This interface will serve not only as an enhanced, on-1ine, automated user's
manual for these codes, but it will also act as an expert aid in generating
a data deck for a problem, especially the probabilistic information needed
to solve a problem using NESSUS. Emphasis has been placed on minimizing
the detailed knowledge that a user must have of NESSUS, allowing him/her to
provide the information about a particular problem in as natural a way as
possible and having the the expert user interface generate the actual data
deck required.

To this end, an expert system called NESSUS/EXPERT is
under development in parallel with the development of the NESSUS code itself.
The system will consist of two major components, the interface to NESSUS/FEM
and the interface to NESSUS/FPI. The interface to NESSUS/FEM is to contain
essentially all of the knowledge about the use of NESSUS provided in the
user's manual. It will also contain any clarification and other specifics
about the use of the code known to those who developed the code and those who
have tested it. It will also contain knowledge about generating probabilistic
information about the problem from general descriptions. The interface to
NESSUS/FPI will contain knowledge on how to analyze and interpret the results
of a run, thus aiding the user in deciding what to do next.
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Most such knowledge 1s embodied in the form of rules-of-
thumb that provide methods for calculating specific values needed by NESSUS
given general information about the problem, that provide hints about how best
to use the system, and that indicate what is useful and important in the
output of a run. Thus, the problem fits, in a fairly straightforward
manner, the production rule knowledge representation method. This is
convenient since most existing expert system building aids are rule-based
and this is the best understood method of the Al technologies. Thus, the
approach is to design and implement two rule-based expert systems to act as
an intelligent front and back end to the NESSUS code.

2.1.3.2 LISP/OPSS Environment

The programming language selected for initial

development of NESSUS/EXPERT is OPS5. OPS5 is an expert system building
software facility that allows a programmer to write production rules directly
as code. The version of OPS5 being used in NESSUS/EXPERT is public domain and
available free from Carnegie-Mellon University. It runs under Franz Lisp Unix
on a DEC VAX. SwRI has recently ported this version of OPS5 to DEC Common
Lisp so that it now runs under DEC VMS and on the Sun Workstation under Sun
Common Lisp.

The entire NESSUS/EXPERT system will be coded intially
using OPS5. The advantage of such a tool 1s that it offers a much higher
level of productivity for the programmer because the knowledge can, to some
extent, be encoded directly into OPS5 code. It also produces a much more
readable and maintainable computer program. Though there are many other more
elaborate, and more expensive, méthods andrtoo1s for creating expert
systems, the production rule technology embodied in OPS5 is sufficient for
this task.

, The major drawback of using a tool such as OPS5 for this
application is its dependence on the Lisp environment. OPSS is an interpreter
coded in Lisp and, therefore, requires Lisp in order to run. Lisp does not
currently provide an easy interface to FORTRAN on the DEC VAX. Thus, in the
case where a data deck is produced for the pre-processor, the pre-processor
cannot be invoked directly from NESSUS/EXPERT. Instead, the user must
leave NESSUS/EXPERT, run the FORTRAN-based pre-processor, and then return
to NESSUS/EXPERT where the resulting file can be read in and the proceés of
developing a data deck for NESSUS can continue.
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A Lisp-based system is being used because there are
currently only about three expert system building tools available written in
FORTRAN. Their functionality is limited and the resulting code is not all
that readable because of the compromises made due to the FORTRAN language. A
solution to this problem, as well as the requirement that all code for the
PSAM project be delivered in FORTRAN, is to reimplement OPS5 in FORTRAN.

The dependence on the Lisp environment would be removed and the interface
to FORTRAN would be automatic. Another option would be to recode the
entire NESSUS/EXPERT system in FORTRAN at the compT‘fion of this project.
This is not desirable because all of the flexibility and maintainability
acquired by using OPS5 will be lost in the translation. Therefore, for the
moment NESSUS/EXPERT will remain in Lisp-based OPSS.

2.1,3.3 NESSUS/FEM Interface

Development of NESSUS/EXPERT has begun with the
creation of an expert system for interfacing to NESSUS/FEM. Because the
expert system developed must be an "expert" in how to use NESSUS/FEM, work has
started by incorporating the knowledge contained in the MHOST User's Manual.
Examination of the MHOST User's Manual supp11ed by MARC Analysis Resesarch
Corporation has revealed a 1ist of various types of knowledge that must be

-used when creating a data file for NESSUS/FEM that will run correctly for a

specific problem. These include:

1. The required information for all problems (i.e., number of
elements, connectivity of the nodes, etc.)

2. Interdependencies of options selected and data provided with
other possible options and data (i.e., the number of elements
provided under the model data must be less than or equal to the
number provided under the parameter data, the *composite option
under parameter data requires the *laminate option under the model
data, etc.)

3. Incompatible selections of options/data (i.e., *frontalsolution
option cannot be used with the *bandmatrix option)

4.  Default options and values (i.e., *bandmatrix is the system
default option, upper bound to the number of beam element crossings
defaults to 1, etc.)

5. A1l available keywords and their "meanings"
6. Format of the parameters and data expected for each keyword, both

for acquiring the needed information and for setting up the data
file properly
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7. Helpful hints concerning idiosyncrasies of the code (i.e., not
recommended to use the option *stress, not recommended to use the
option *displacement method for inelastic computations, etc.)

8. Helpful hints concerned with the "best" way to do something (i.e.,
for 1inear elastic analysis use the option *constitutive to avoid
unnecessary computations, etc.)

9. What information about the problem can be i{nferred from other
information. A1l but the last type of knowledge appears in the
user's manual.

Of course, many of the first eight rule-types have been developed from
talking with experts on the NESSUS code because the manual does not always
provide all of the information necessary to run the code. However, it does
provide an excellent place to start.

The overall design of the user interface maintains in
spirit, anyway, the three step process used by the NESSUS code for developing
a data deck for the FEM processor inputting the parameter data, the model
data, and the incremental data, if needed. Input to the pre-processor is
handled as a separate option in NESSUS/EXPERT. However, inputting the
parameter data is not done immediately at the start of a session because many
of its values can be inferred from the model data. Thus, the model data is
input first, the necessary parameter values are determined by NESSUS/EXPERT
and then the user is given a chance to enter whatever other parameter data
he/she deems necessary. Each of the three steps consists of the following
rule-sets:

0 Rules to guide the questioning for required information and to
check its correctness

0 Rules to handle the optional, keyword input and to check its
correctness

0 Rules to handle a HELP facility

0 Rules to output the data to the screen so that the user can verify
the data

0 Rules to check the completeness and consistency of the provided
data '

0 Rules to write the data to a file in the proper format

tEach of these groups of rules will constitute a separate
portion of the knowledge base that we will refer to as rule-sets. They will
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contain the various types of knowledge discussed in the previous section.

Overall, NESSUS/EXPERT for NESSUS/FEM can currently be

characterized as a menu-driven consultant. Some input may come from
previously prebared files, while other input can be supplied by the user

- interactively at the terminal. The basic tasks accomplished during each of
the major phases in the system are described below. A block diagram of the

system corresponding to this description appears in Fig. 2.25.

1.

Identify Problem: During this beginning step, the user is asked to
specify the name of the output file to be created and the type of
data deck to be created. This information is then used by
NESSUS/EXPERT to determine what should be done next.

Define a Preprocessor Data Deck: If the type of data deck to be
created is a pre-processor data deck then the system follows the left
branch of the flow diagram in Fig. 2.25. Currently, NESSUS/EXPERT
is set-up simply so that such information can be entered through a
dialogue guided by the expert system so that everything that is
needed is entered. Each data set must consist of five categories of
information: 1) RANDOM, 2) SELECT, 3) POINTS, 4) MEANS, and 5)
DEVIATIONS. NESSUS/EXPERT simply prompts the user to enter all of
this information during the dialogue. The structure for consistency
checking of the data before it is written to the file 1s available,
but currently no rules have been implemented. Any number of pre-
processor data decks can be created during a given session. At the
end of the session, the data is written to the file specified
initially so that it can then be used by the pre-processor.

Initial Dialogue: If, during the initial identification dialogue

the user specified that a FEM data deck is to be created, then the
right branch of the system flow diagram given in Fig. 2.25 is
followed. The user is asked to provide some introductory information
and to complete the minimum subset of model data categories which
constitutes a valid data deck. This information is extracted through
an initial dialgue with the user which at the moment is an unvarying
sequence of questions for which the user must supply answers. This
area of the code will eventually need significant expansion from the
Al point-of-view. Currently it only contains a minimum amount of
knowledge that was derived from the MHOST manual. Eventually, it
will include more detailed expert knowledge that wil help to
determine the categories that should be included in this minimal data
set based on some general questioning of the user.

Input Model Data: Most of the topics for the model data section of
the NESSUS data deck are selected by having the user specify a topic
by number or name from a large 1ist of available topics. These
topics correspond to the keywords used in the NESSUS code. Once a
topic is selected, NESSUS/EXPERT guides the user in inputting the
required information associated with that topic either by hand of
from an existing file. When input is completed, control is returned
to the main model data menu. Respecification and alteration of data
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5.

already provided is possible at all times. Also available is a help
file on any of the topics that can be selected. Currently the
knowledge that is contained in this section has come mostly from the
user manual for MHOST. However, when ambiguity or inconsistency has
appeared information has been acquired directly from the coders and
testers of MHOST. :

Input Random Variable Definitions and Perturbations: If a
probabilistic FEM data deck is being prepared in the NESSUS/EXPERT
session, the user will be asked to provide a set of random variables
and perturbations once he/she has completed the model data section of
the data deck. In overall style, the data entry in this sectfon is
handled in a manner highly consistent with previous sections of
NESSUS/EXPERT. A certain set of keywords are needed, along with -
their corresponding piece of data. The system provides guidance in
filling in the values associated with the the required keywords
either manually or from a file. First, the definitions are simply
asked for, then input of the perturbation information is guided by a
parameter menu just 1ike the model data section. As with all other
sections of NESSUS/EXPERT, information can be corrected, deleted, or.
respecified at any time. This section currently embodies only the
knowledge provided by Supplement Il of the MHOST User's Manual.
However, this section will require much more attention in terms of
providing support to the user in the form of an intelligent aid for
hand1ing probabilistic geometric data in the coming year.

Consistency Checking and Validation of the Data Deck: Consistency
checking of the completed data deck is one of the more important
functions of NESSUS/EXPERT for it is here that much of the expert
knowledge on how NESSUS works would be used to ensure a correct data
deck. The goal of consistency checking is to determine whether the
information in the completed data deck is consistent among all of the
various categories. The rules encoded so far in NESSUS/EXPERT are,
for the most part though sometimes very subtlely, contained in the
MHOST User's Manual. Much of the knowledge has required clarification
from either experts at SwRI or the original coders of the NESSUS
system. When a problem is detected in the information provided in
the data deck, the user is given a number of options for solving it,
depending on the problem itself. Due to the power provided by a tool
such as OPS5, all errors will be detected in a very straightforward
manner and {if another inconsistency is created by fixing a problem,
this is detected as well. The knowledge encoded in the system so far
has emphasized compatibility between the parameter and model data,
between the BFGS and ITERATIONS data, between the CONSTITUTIVE and
the WORKHARD data, between the random variable data for a particular
topic of the model data and that model data topic, between the
perturbation and random variable data, and within the WORKHARD data
itself. This section will continue to be expanded for the duration
of the project as this is where much of the intelligence of the
NESSUS/EXPERT will reside.

Output Data Deck: Once the data deck has been completed and verified
as being consistent (to the extent that is currently possible by
NESSUS/EXPERT), the data deck is printed out to a file. It is done
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in the following order: 1) the header records and deck title card,
2) the parameter data section, 3) the model data section, 4) the
random variable section (if needed), and 5) the perturbations (if
needed). The various sections are printed out in a suitable order
(alphabetically or numerically as appropriate). This output goes to
the file specified at the beginning of the session. Most of the
basic structure of NESSUS/EXPERT exists now. What is left to do in
many cases is to fil11 in the knowledge bases so that the coverage of
NESSUS/EXPERT is complete. Other major additions left to be done are
addressed in Section 3.1.3, Current Efforts on NESSUS/EXPERT.
- 2.1.3.4 Rule Structure
A production rule encodes knowledge about a problem in the
form of IF-THEN statements also known as condition/action pairs. These
production rules manipulate a set of data structures called objects. There
can be an arbitrary number of these objects and each has associated with it a
set of attributes and potential values for those attributes.
The generic form of an OPS5 production rule looks like

the following:

(p ex-rule (objectl attributel valuel attribute2 nil) (object2
attribute3 <> value3) --> (make objectd attributed valued)
(modify 1 attribute? value?) ) '

The letter "p" just inside the left parenthesis indicates
the beginning of the production rule. The rule's name is "ex-rule". This
allows the system to distinguish it uniquely from all other rules in the
knoweldge base. The rest of the rule that occurs before the symbol "-->"
is called the left-hand-side (LHS) of the rule. It contains two
conditions. The first is that there exist an objectl with an attributel of
value valuel and an attribute? with no value. The second is that there
exist an object? whose value for attribute3 1s not equal to value3. The
portion of the rule following the "-->" symbol is called the
right-hand-side (RHS) of the rule. It contains two actions. The first
creates a new object, called objectd4 with attributed of value valued. The
second modifies the first object 1isted in the LHS of the rule (objectl) so
that its attribute2 has value value2. Thus, if this rule were to become
true, 1t would result in modifying the world of objects and attributes in
that specified way.

In OPSS such rules are used during processing by a



76

technique called forward chaining. This means that the rules are data-
driwen. Data in the world (i.e., the objects and their attributes) change.
Such changes cause some of the LHS's of the rules in the knowledge base to
. become true. One rule from this set of true rules is selected through a
methhod called "conflict resolution" as the appropriate rule to activate, or
fire. Firing causes the actions on the RHS of the rule to be performed
resmilting in changes to the data in the world making a different set of
prodiuction rules in the knowledge base true. This process of forward chaining
conttinues until information is needed from the user or no more production
rules can become true. If information is needed from the user, then this new
information can modify the data in the world, thus resulting in continuing
the:chaining'process. If no more rules are true, then prbcessing stops.
One can represent fairly directly in OPS5 the knowledge
needled for NESSUS/EXPERT, such as information concerning a certain piece of
parameter data for NESSUS. For example, the object could simply be called
parameter-data. Its attributes could include its name, its parameter-value
names, and related model data names. The parameter data name's value could
be ELEMENTS, its first parameter-value (element type) could be 7, and the
reTated model data names would include ELEMENTS. A rule could then be
devfised that, based on the fact that the parameter data'§ name is ELEMENTS
and its first parameter value is 7, can determine which pieces of model
data are needed to run the problem correctly. The rule might look
something 1ike the following when converted into English: "IF there is an
object called parameter-data, whose name is ELEMENTS and whose first
parameter-vaiue is 7, THEN the model data whose name is ELEMENT is also
needled. This is a fairly obvious and simple rule, but they can become very
complex, depending on what knowledge must be represented. The result of
this rule is that if parameter data called ELEMENT exists in the data deck,
them the corresponding model data called ELEMENT must also exist. This is
a sfimple example ofhow consistency checking of the data deck can be done
ustmg OPS5 rules.
2.1.4 Verification Studies
2.1.4.1 Objectives of Verification Efforts
The basic objective of the verification effort is to
applly the methods developed and implemented in NESSUS family of computer
programs to the analysis of actual space propulsion system components. The



77

typical components to which the methods will be applied include a turbine
blade, a high pressure duct, a lox post and a transfer tube duct liner. The
verification efforts would cover a wide range of analysis options developed
and implemented in NESSUS codes.

The knowledge gained in the verification efforts will be
implemented in NESSUS expert system. The verification effort is broadly
divided into simple verification and complex component verification
analysis. Since NESSUS is in a state of continuous development during the
contract, the simple verification studies are designed to meet the following
objectives.

The simple verification models exercise the element
types, the typical random variables, the range of perturbation of each random
variable and various solution strategies for a particular component but on a
simplistic model. These studies differ from validation studies by the fact
that they are specifically targeted for each component analysis.

The results of the simple verification studies aid in
establishing confidence in the code, identify its limitations in user
interface, as well as analysis capabilities when applied to analysis of
- practical components. They also result in correcting element deficiencies and
devise solution strategies that will be effective when analyzing full scale
verification problems. The full scale verification problems on the other
hand, if possible, are conducted on existing production finite element models
and are typically expected to be much more computationally intensive requiring
large main frame computing facility.

2.1.4.2 Scope of Verification Efforts

The space propulsion system components are subjected to
environments with many random variables. Due to the difficulties in the
instrumentation of high energy, high pressure and temperature systems, many
variables are not well-characterized. Nevertheless, many components are
subjected to severe environments. The current design philosophy 1s to analyze
and design the components based on worst conditions using state-of-the-art
deterministic analysis methods. The environments and conditions under which
many space propulsion system components operate lead to structural analysis in
the non-linear analysis domain. These structural analysis non-linearities can
be due to material property or due to geometric changes or due to contact
boundary conditions. Detailed discussion of the environments and
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deterministic analysis techniques to which some typical space propulsion
system components such as turbine blades, lox posts, transfer tubes, high
pressure ducts, nozzle feed 1ines, and main combustion chamber walls are
subjected to were described in detail in the first year report.

The composite. loads spectra contract and probabilistic
structural analysis contract are bold and challenging attempts to extend
advanced deterministic structural analysis methodologies into probabilistic

structural analysis domain. Developments under the PSAM contract are
jmplemented incrementally into the NESSUS program during the five year |
contract period with increasing levels of analysis sophistication each year.
Due to scheduling constraints, all analysis options available in NESSUS can
not be applied to every component. Thus, a strategy has been developed in
which the component, the type of structural analysis, random variables and the
area of emphasis are chosen to be consistent with code development. This has
been achieved in a probabilistic structural analysis domain for each component
consistent with primary deterministic analysis requirement for each

component. The scope of the verification studies achieves these objectives
for each component in the order 1isted below:

1. Turbine blade

2. High pressure discharge duct

3. Lox post

4, Transfer duct

2.1.4.3 Turbine Blade Component Random Varlables
The high pressure fuel pump turbine blade has been c'osen

as the first component to be analyzed by NESSUS finite element code. The
analysis options and random variables chosen are consistent with the state of

program development. The random variables that will be exercised on turbine
blade analysis are:

1. Material property variations and orientations.
2. Geometry changes.

3. Centrifugal loads.
4

Pressure loads.
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5. Temperature loads.

The strategy of the treatment of the random variables are first presented
followed by the results of the simple verification studies.
2.1.4.4 Material Property Variations ‘

The most commonly used turbine blade materials are
nickel-based super alloys. Directionally solidified Mar-M-246 (Hf) is used in
space shuttle main engine high pressure turbopump turbines. The single
crystal PW1480 material is being evaluated for future use in the engine.

These materials are anisotropic in nature and exhibit strong directionally
oriented properties. As an example, for the PW1480 material at room
temperature, the elastic modulus in the 111 plane can be as much as 250%
greater than the modulus in 001 plane (Fig. 2.26). Thus, any perturbation of
material orientation affects the blade stiffness and thereby its static and
dynamic response. The material orientation angle is one of the random
variables chosen in probabilistic structural analysis of turbine blades.
‘Treatment of material orientation angle in single crystal blades is easier
when compared to Directionally Solidified (DS) material blades. This is
because the DS blade material typically contain a random number of crystals in
each blade, (usually from 3 to 10), the volume of which can be random, with
each crystal having its own material axis orientations. The single crystal
materials, on the other hand, contain only one crystal but the orientation
angles can vary slightly along the length of the blade based on crystal growth
direction. -

A typical statistical data of the distribution of the
primary material axis orientation to the stacking axis from a set of hundred
blades as measured at the base of firtree is shown in Fig. 2.27. Statistical
analysis of data indicates a normal cumulative distribution provides a
reasonable good fit of data. However, since blades having a cone angle of
greater than 10° are rejected, the cumulative distribution function for the
accepted blades is a truncated one modified as shown in Fig. 2.27.

Perturbation of material orientation angles is achieved
in NESSUS by designating the orientation angles as a random variable. The
studies of the perturbation of material orientation angles and the behavior of
the numerical algorithm is discussed later in the section. '

The other factor that might be considered in the material
property variations is the scatter in elastic constants themselves from
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specimen to specimen at a given temperature. In general, insufficient amount
of elastic properties data points exist at each temperature to do a good
statistical analysis to accurately characterize the variations. However, this
variation for elastic constants at a given temperature is small. A typical
set of elastic constants for wide range of temperatures for PW1480 material is
shown in Table 2.6. |

Table 2.6

Elastic Constants for PW1480 Material as a Function of Temperature

-400°F 70°F 1400°F 2000°F
E 19.96E6 18.38E6 14.75E6 11.0E6
G 20.50€6 18.638B6 15.2786 | 12.82€6
n 0.376 0.386 0.395 0.416

The material property for anisotropic material is currently input to the code
explicitly by specifying completing the matef%a]iD matrix (s=De). However,
~.for PW1480 material in the principal material orientations, a set elastic
constants that can completely characterize the elastic response can be
specified by E, n, and G. Thus, new features will be added to the code for
specifying these constants (instead of the full D-matrix) and perturbations of
them to calculate the response due to material property variations. The
option of perturbing each coefficient of the full D-matrix is postponed to
later releases of the code. The issue of building in rules in the NESSUS
expert system to avoid material property perturbations that violate the laws
of physics such as non-positive definiteness of the matrix will be addressed.
' 2.1.4.5 Geometry Changes
Because of the criticality of the component, every
turbine blade that is used in an engine is subjected to quality inspection
procedure for adherence to the design geometry. The blades that are used in
space propulsion systems are typically short and compact, 0.5" to 3.0" in
length when compared to turbine blades used in air breathing engines. The
specified tolerance is a function of the manufacturing method. For cast
blades, the tolerances are usually of the order of 0.005". Many turbine
blades, including the kind used in the Space Shuttle Main Engine, are of cast



type with machined firtree which forms the mechanical attachment to the
disk. The measured geometrical variations found in these blades generally
fall in the category of relative twist of the blade (Fig. 2.28) and lateral
shift of the profile within the tolerance envelope. This is presented in the
form of center of gravity shift (x, y, coordinates) for a set of about seventy
blades (Fig. 2.29). An analysis of the measured data indicates that a
majority of geometrical variations from blade to blade occur when the firtrees
are machined. The net effect of geometric variations introduced in this
machining step is a rigid body shift of the airfoil, shank and platform
relative to the stacking axis which runs at the center of firtree. Thus, the
strategy that will be adopted for the perturbation of geometrical quantities
for turbine blades will be the perturbation of nodel coordinates of the finite
element model resulting from rigid body rotation about x, y and z axes
rotations.
2.1.4.6 Centrifugal Load Variations

Centrifugal load is one of the primary loads on turbine
blades. It contributes to a major share towards the mean stress level and
thus plays a critical role in fatigue 1ife calculations. The centrifugal load
varies as the square of the turbine speed. The speed profile of high pressure
fuel turbopump in SSME is shown in Fig. 2.30 which closely follows the engine
thrust profile. An expanded trace of measured speed between 32000 to 36000
rpm from a pump signature test is shown in Fig. 2.31. Here, the power level
was reduced 1% per three seconds of test.

Random speed oscillations can be seen about a mean from
this data. Detailed study of test to test variations furnishes a good
statistical database for this data. It is a level 1 type of probabilistic
loading in that randomness of centrifugal load is spacially homogeneous for
the finite element model. The engine balance models indicate that 2s speed
variations at steady state power level for the SSME fuel pump is about 400 rpm
out of 36600 rpm assuming a normal distribution. It is planned to use the
actual processed test data from engine tests for the probabilistic structural
analysis. The benefit of the results from the composite load spectra
development contract will be utilized for all loads subject to their
availability.
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2.1.4.7 Steady-State Pressure Loads

The steady state pressure loads on turbine blades is a
function of flow conditions at inlet and outlet of the turbine. Detailed
measurements of turbine blade surface pressures and temperatures from actual
engine tests are unavailable. There are a number of measurements such as
preburner chamber pressure, downstream turbine discharge pressure and
temperature (downstream of turnaround duct) and pump head raise
measurements. There are a few measurements from instrumented turbopumps for
temperature in the stators (nozzles) upstream of turbine blades. Thus, the
fluctuation of static differential pressure on the turbine blade between
pressure and suction faces will be a calculated quantity obtained from
indirect measurements and theoretical engine models.

The type of stochastic modeling of pressure load on a
turbine blade is closely related to the design features of the turbine. For
the chosen high pressure fuel turbopump component, the design features are
illustrated in Fig. 2.32. A notable feature is that this turbine has a
secondary flow circuit for cooling the rotating hardware and includes cooling
of the shank portion of the turbine blades. .This cooling circuit affects the
pressure in shank portion of the turbine b1ade."Thus, the pressure load on

"turbine blade will be treated as a random field, Level II type modeling. It

is planned that the statistics of the differential pressure variation for the
airfoil will be correlated through turbine torque variation. The shank
pressure variations will be correlated to coolant pressure variations.

Typically, the pressure information will be available at
three or four streamlines or cross sections which will be independent of the
particular finite element model. The pressure at model node locations for a
particular model will then have to be obtained through interpolator codes.

2.1.4.8 Blade Temperature Loads

The temperature loads plays a critical role in turbine
blade analysis. For space p;opulsion systems:of [bX/LHZ systems with staged
combustion process, the range of temperatures can be very high in a duty
cycle. For example, in SSME during one mission duty cycle, the blades will be
a temperature range from 2200/R to 200/R. While it is virtually impossible
to measure turbine blade temperatures in an actual engine, first stage stator
(nozzle) temperature data from a few instrumented turbopumps is available.
While temperature transients cause the worst case stresses when compared to
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steady-state, the initial scope of the probabilistic structural analysis of
turbine blade will be limited to steady-state loads. For this reason, the
discussion is l1imited to solution strategies for the treatment of
probabilistic temperature loads at steady-state.

Just as in the pressure case, the characteristics of the
temperature random variable is closely related to the design features of the
turbopump. For a ﬁ?gﬁfpressd}e fuel turbopump, the coolant flows around the
shank. In actuality, the coolant and hot gas flows around the shank are very
complicated. The hardware shows large variations in oxidation discoloration
(which is a rough indication of temperature) from pump to pump, indicating
that as the various seals wear they affect the flow circuit resistances and
thereby temperature in the shank region. Thus, the developed probabilistic
structural analysis methodology should be able to handle large local _
perturbations in temperature. On the other hand, the airfoil temperatures at
steady state is essentially the hot gas temperature. Typically the shank area
has a large thermal gradient when compared to the airfoil as shown in Fig.
2.33 and Fig. 2.34. The platform of the turbine blade itself is nearly
isothermal at steady-state. Thus for the probabilistic structural analysis of
HPFTP turbine blade, the temperature will be treated as a random field with
varying statistical characteristics in airfoil, p1atf6rm and shank. Thus,
stochastic modeling of temperature is a Level II type modeling.

2.1.4.9 Deterministic Verification Solutions

Simple models, Fig. 2.35 through Fig. 2.37 comprised only
of solid elements were exercised in NESSUS/FEM to understand and verify the
performance of basic solid element as implemented in NESSUS. Several random
variables were also exercised with typical range of perturbations that will be
used in component verification studies. First, the deterministic results
obtained from NESSUS are discussed, followed by perturbation analysis '
results. All the exercises were conducted on an anisotropic beam
representative of PW1480 material properties at room temperature.

Considering centrifugal load fifst, model shown in Fig.
2.35 was exercised for both with one of the model axis as the axis of rotation
as well as off axis rotation for hinged condition. The program results
exactly match the theoretical calculated radial loads.
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Fig. 2.35 Solid Element Beam Model A, 2 x 20 Elements
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Fig. 2.36 Solid Element Beam Model B, 4 x 20 Elements



Fig. 2.37 Solid Element Beam Model C, 8 x 40 Elements
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Considering the pressure loads next, the models in Fig.
2.35 - Fig. 2.37 were exercised for uniformly distributed pressure load and
constant moment condition. The results of the uniformly distributed pressure
load is presented in Table 2.7.

Table 2.7

Uniform Pressure Loading Results Cantilever Beam
FEM Results/Theory Ratio

Simple Beam

Theory Model A Model B Model C
Tip Deflection 1.0 0.69 0.74 0.877
Fixed End Stresses 1.0 0.51 0.66 0.867

The basic solid elements as implemented currently in
NESSUS is a strict eight-noded isoparametric element. It is known that these
elements are stiff when they encounter pure bending situations and require a
fine mesh to obtain good results. There are several approaches possible to
improve the performance of this element. One of the well-known approaches is
the introduction of additional modes such as (1-r2), (1-52), (l-tz) for the 8-
noded brick elements. While the introduction of these functions improves the
performance dramatically for pure bending cases, they also violate
compatibility and do not pass the patch test for arbitrary shaped
quadrilaterals. Further, the performance deteriorates for arbitrary
quadrilaterals. The problem of the patch test failure was subsequently cured
by evaluating the contribution of the incompatible modes to the Jocobian
matrix at the centroid. It has been found that the resulting element gives
superior performance to the original incompatible element.

The other approach to make the element flexible is
through the use of reduced integration quadrature. The two concepts that are
used are fully or uniformly reduced quadrature and selective reduced
integration quadrature. Recent studies demonstrating the equivalence of a
class of mixed models with reduced/selective integrated elements in linear
elasticity has elevated the reduced integration approach from "tricks" to
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legitimate methodology. However, the important considerations in the use of
the methods are the insufficient rank of the matrix in the fully reduced
method and the extension of the methodology to anisotropic cases in selective
reduced method. The fully reduced quadrature is available in NESSUS without
the hour-glass control. The fully reduced quadrature results in spurious
modes, and therefore must be used with caution. For static analysis,
computations using fully reduced integration scheme may be possible depending
upon the boundary conditions providing stability to the problem. However, for
transient dynamic analysis, hour-glass viscosity control to suppress the
spurious modes is a necessity to obtain accurate results.

One of the principal deficiencies of the selective
integration procedure or recently the B approach as normally impiemented is
that it is limited to isotropic case. For turbine blade applications, the
material is anisotropic and the D-matrix is fully populated for general
material orientation. The use of standard selective reduced integration
schemes to anisotropic cases is ambiguous. Thus, 1t is desirable to implement
extensions to selective integration schemes or to the B approach in the
context of displacement formulation to cover anisotropic cases. The
additional benefit of such a procedure would be its extension to nonlinear
problems where tangent modulii always exhibit anisotropic character. Several
temperature gradient solutions were also conducted on models Fig. 2.35 through
Fig. 2.37 for the anisotropic material element. One of the notable features
of the PW1480 material is that while fts elastic properties exhibit strong
directionally dependent properties, the coefficient of thermal expansion is
nearly isotropic. The results of the temperature solution are presented in
Table 2.8.
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Table 2.8
Temperature Gradient Solution 1000° Through Thickness

Simple Beam

Theory Model A Model B Model C
Tip Deflection
(ratios) 1.0 1.17 1.02 1.12
Stress
(absolute
values) 0 128000 68000 33786

The maximum perturbations from 001 to 111 and vice-versa,
were tested to check the convergence characteristics under maximum elastic
property changes resulting from material orientation., In practice, material
orientations are not allowed to differ more than £10° from the primary
direction. Thus, the Newton-Raphson method is expected to be adequate for
material orientation perturbations for component verification. The same
strategy should also be adequate for material property variations also as they
are typically very small for single crystal blades.

Perturbation studies on geometrical changes are next
addressed. The rigid body rotatfon about the base of the cantilever type
geometric variations found in SSME turbine blades were earlier discussed. The
greatest effect of this type of variation is in the contribution due the
centrifugal load to the stresses due to change in the center of mass
Tocation. Two studies were conducted on the Model A ( Fig. 2.35) where the
geometrical perturbations were 1 degree and 10 degree rotational shift about
the base of the rotating beam. for 1 degree perturbation, the default Newton-
Raphson method converges for normal engineeringlimit of acceptable residual
load errors. however, when the residual load vector {s tightened to the order
of 1E-5 of the total centrifugal load, the Newton-Raphson technique exhibits
convergence and then divergence characteristics. However, when sealant
1teration option is used, the algorithm exhibits uniform cbnvergence‘and
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converges to the tight tolerances (1E-5 of the total load) in three
iterations. 1in actual turbine blades, variations of less than 1 degree tilt
are expected. Thus, the available solution strategy appears adequate to
handle geometric perturbations.

Due to the convergence behavior of Newton-Raphson
technique for 1 degree perturbation, another case with a 10 degree
perturbation was run. This case, the Newton-Raphson technique diverges from
the start. The results are still under study. One fo the features of the
test problem is the state of stress and centrifugal load in body fixed
reference frame do not change due to perturbation. However, the global
location of the body is different when measured from determinate reference
frame after perturbation. The question of how large a perturbation the
implemented solution strategies can tolerate will be studied further.

At the current state of development, NESSUS/FEM is
applicable for linear analysis only. Thus, the perturbation of loads such as
centrifugal and ressure loads amount to resolving the linear problem for a new
load case with the old stiffness matrix. Irrespective of the magnitude of the
perturbation of centrifugal and pressures, so1utdons converged in test cases
in two iterations using Newton-Raphson method. Perturbation of loads and
‘convergence have a greater bearing in the nonlinear analysis. The simple
verification studies will continue to improve element and algorithm
performances under a variety of conditions. Some of the improvements under
development from the verification studies are described in the current efforts
chapter of NESSUS/FEM. The results of the study will be used in component
verification analysis of the turbine blade.

2.1.4.10 Perturbation Verification Studies
Perturbation verification studies were conducted on the
model shown in Fig. 2.35. The random variables exercised to date include:

1. Material orientation angle
2. Nodel coordinates
3. Pressure

4. Centrifugal Load
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The perturbation algorithm relies on established
predictor-corrector methods used in nonlinear finite element analysis. There
is no one iterative method that exists that exhibit ideal convergence
characteristics as well as be cost effective in all situations. The solution
strategy to be used is a function of the type of nonlinearity at hand. The
methods that have been developed for nonlinear finite element analysis include
full Newton, Quasi Newton, and Newton Raphson techniques. A1l the above
techniques are available in NESSUS at a global level common to all
perturbations within a run.

The logic for choosing the solution strategy should
primarily depend on the rate of convergence and cost of the solution. A
necessary condition for convergence for all the iterative methods 1s the exact
calculation of residual load vector at each iteration. They all differ in the
evaluation of predictor, the trial stiffness matrix used. In full Newton, the
tangent stiffness is evaluated at every iteration. In the modified Newton-
Raphson, the original stiffness matrix or the matrix at the start of the
increment is used. In Quasi-Newton methods, the stiffness matrix {is updated,
but numerical strategies are used to reduce the amount of computations (update
of stiffness matrix without inversion) than it would be if a full Newton
method (requiring a full matrix inversion) was used. The initial exercises in
the perturbation examples use the default Newton-Raphson method in the code.
Other solution strategies were used only when divergence was encountered while
using Newton-Raphson method.

The material angle perturbations are first addressed.

The model (Fig. 2.35) was exercised for material axis variations in the
presence of pure axial load. The objective of the studies were to test the
convergence characteristics. One of the considerations was the study of the
performance of the default Newton-Raphson method under perturbations that
stiffen the structure. This can happen in turbine blade analysis when
material orientation variations can result in a stiffer blade in the primary
radial direction.

The study exercised the model in Fig. 2.34 with
perturbations about the deterministic state resulting in stiffer or softer
structure with varying magnitude. The results are summarized in Table 2.9.
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Table 2.9

Material Orientation Angle Perturbation
Axial Load Results

No. of Iterations
for Residual Load

Environment
Deterministic  Amount of Perturbation % of Applied Load
State About Deterministic State Convergence 1 o0.1 0.01
001 + 10° yes 4 8 16
001 To match 111 plane no - - -
(36° + 45°)
111 + 10° yes 2 3 7
111 To match 001 plane no - - -
(36° + 45°)

The maximum perturbations from 001 to 111 and vice-versa,
were tested to check the convergence characteristics under maximum elastic
. property changes resulting from material orientation. In practice, material
orientations are not allowed to differ more than +10° from the primary
direction. Thus, the Newton-Raphson method is expected to be adequate for
material orientation perturbations for component verification. The same
strategy should also be adequate for material property variations also as they
are typically very small for single crystal blades.

Perturbation studies on geometrical changes are next
addressed. The rigid body rotation about the base of the cantilever type
geometric variations found in SSME turbine blades were earlier discussed. The
greatest effect of this type of variation is in the contribution due the
centrifugal load to the stresses due to change in the center of mass
location. Two studies were conducted on the Model A (Fig. 2.34) where the
geometrical perturbations were 1 degree and 10 degree rotational shift about
the base of the rotating beam. For 1 degree perturbation, the default Newton-
Raphson method converges for normal engineering 1imit of acceptable residual
Toad errors. However, when the residual load vector is tightened to the order
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of IE-5 of the total centrifugal load, the Newton-Raphson technique exhibits
convergence and then divergence characteristics. However, when sealant
iteration option s used, the algorithm exhibits uniform convergence and
converges to the tight tolerances (IE-5 of the total load) in three
iterations. In actual turbine blades, variations of less than 1 degree tilt
are expected. Thus, the available solution strategy appears adequate to
handle geometric perturbations. - -

Due to the convergénéé”EEESQfaf<6fjﬁéwton-Raphson
technique for 1 degree perturbation, another case with a 10 degree X
pérturbation,was run. This case, the Newton-Raphson technique diverges from
the start. The results are still under study. One of the features of the
test problem is the state of stress and centrifugal load in body fixed
reference frame do not change due to perturbation. However, the global 7
location of the body is different when measured from determinate reference
frame after perturbation. The question of how large a perturbation the
implemented solution strategies can tolerate will be studies further.

At the current state of development, NESSUS/FEM is
applicable for 1inear analysis only. Thus, the perturbation of loads such as
centrifugal and pressure loads amount to resolving the linear problem for a
new load case with the old stiffness matrix. Irrespective of the magnitude of
the perturbation of centrifugal and pressures, solutions converged in test
cases in two iterations using Newton-Raphson method. Perturbation of loads
and convergence have a greater bearing in the nonlinear analysis. The simple
verification studies will continue to improve element and algorithm
performances under a variety of conditions. Some of the improvements under
development from the verification studies are described in the current
elements chapter of NESSUS/FEM. The results of the study will be used in
component verification analysis of the turbine blade.
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3.0 CURRENT EFFORT

3.1 NESSUS/FEM

Two different approaches have been proposed for the extension of the
NESSUS perturbation algorithms to inelastic problems. The first approach
calls for continuing the development within the displacement formulation
used in the first year PFEM effort. Extension of the displacement formulation
to inelastic analysis in NESSUS/FEM will require a major reorganization of the .
internal data structures within the code. The second approach calls for the
adoption of a mixed iterative formulation, which would preserve the internal
data structure of the present code. The development and implementation of
appropriate perturbation algorithms for inelastic analysis will be started as
soon as a decision 1s reached regarding the finite element formulation adopted
for future PFEM development.

The development of a finite deformation kinematics algorithm for
NESSUS is currently well underway. The adopted formulation utilizes an
updated Lagrangian mesh description, with a constitutive relation based on
the Green-Naghdi rate of Cauchy stress and rate\of deformation. Although
the development of nonlinear displacement and strain modeling capability is
"not required in NESSUS/FEM until FY88, MARC has taken advantage of the
development of a similar capability for the MHOST code. The finite
deformation-algorithms being developed for the MHOST code will be added to
the main development version of NESSUS/FEM in a very near future.

An enhanced continuum-based plate/shell element with surface node
definition is currently under development at MARC. This element is
envisioned as an eight-node brick with assumed strain modes based on the
exact bending solution for an elastic isotropic material. The approach is
expected to result in a non-locking element with enhanced bending behavior
which can be distorted to a high aspect ratio (h/L - 1/10) in order to
model moderately thick plate and shell-like structures. An early version
of this element for use in linear elastostatics should be available in time
for the 2/1/87 code delivery,

A revised format to allow specification of surface pressures and edge
tractions on a nodal basis will be developed and tested. Changes will be
implemented to allow the degeneration of continuum-type elements to form
triangles, wedges and tetrahedra. This will require changes to the strain
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smoothing procedure available in NESSUS 1.1. The new smoothing procedure
will then be tested for robustness. ’

The test cases proposed in the preliminary plan for validation of the
NESSUS code are being exercised at MARC. In addition, MARC is in the
process of compiling a standardwljgtrof test problems that will be used to
exercise all versions of NESSUS shipped from MARC. These problems range in
size and complexity from small one element tests to 1rregu1ar e1ement o
meshes of a few hundred degrees-of-freedom.

3.2 NESSUS/FPI

Testing of the new COF estimation procedure (Section 2.1.2.7) and
the validation of the NESSUS code is in progress. The exact solutions of the
validation test problems have been obtained for the first five problems
(Section 2.1.2.8). Solutions for the remaining problems will be obtained in
the current year. These solutions will be used to compare results generated
from the NESSUS/FPI. By using the perturbation data base generated by MARC
(perturbation solutions are now available for the validation problems 1, 3 and
5), the new CDF estimation procedure will be used to continue the validation
of the NESSUS modules and the solution procedure. The solutions will require
additional runs of the deterministic FEM solutions and, if necessary,
additional perturbations.

Effort in integrating the NESSUS/FPI with the NESSUS/PRE, NESSUS/FEM and
NESSUS/EXPERT is in progress. The basic structure of the expert system code
NESSUS/EXPERT is in place and operational. The emphasis during the next year
will be to make the code easier to use by the engineer.

One of the difficulties identified in conducting probabilistic structural
analysis on systems with a large number of random variables is developing a
method of efficiently entering the random variables into the computer. For
the analysts to enter a separate probabilistic data base would be time
consuming and error prone. The approach being pursued is to use the existing
data base for the structural model along with the NESSUS/EXPERT to query the
user as to which variables are random. Distributional information and the
degree of correlation will also be provided at this time. With this
information, NESSUS/EXPERT can generate an input file for the FORTRAN code
NESSUS/PRE.

The user will now have to exit NESSUS/EXPERT to run NESSUS/PRE.

However, prior to exiting, NESSUS/EXPERT will save a data file of the
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model and the random variables. NESSUS/PRE transforms a set of
correlated random variables to a set of uncorrelated random variables
using the eigenvector transformation method. This set of uncorrelated
variables are saved in a file. Finally, the user will have to enter
NESSUS/EXPERT again. NESSUS/EXPERT will retrieve the previously stored
files and generate a complete NESSUS/FEM file which includes the
structural model data, the random variables data and the perturbation
settings.

3.3 NESSUS/EXPERT

Now that the basic structure and approach to NESUSS/EXPERT has been
designed and implemented, emphasis is turning to an evaluation of this initial
prototype to determine what is good and bad about it. Work will also proceed
on extending the knowledge base to include knowledge of all keywords listed in
the MHOST User's Manual. Finally, once the results of the prototype - -~
evaluation are completed and implemented, work will begin on handling the
probabilistic data in a more natural and intelligent manner.

Extensive discussions between the experts on the use of NESSUS and the
knowledge engineer implementing NESSUS/EXPERT have already begun. results so
far indicate that some changes to the basic control structure need to be made
in order to take advantage of some overlap in the use of certain data in
different sections of the input data deck. The result will probably be a
major change to the overall flow diagram given in Figure 2.25. However,
because of the use of a very high level language such as OPS5, the necessary
changes should not be difficult to make.

Work on enhancing the knowledge base will not proceed until the basic
changes to the prototype flow of control have been made. The major source of
knowledge will be the MHOST User's Manual and the knowledge will emphasize the
sue of keywords. More held files and consistency checking rules will also be
added as the project progresses. When the information in the User's Manual is
incomplete or ambiguous, knowledge will be solicited from human experts on the
use of MHOST. '

Hand1ing the input of the probabilistic data in a natural and intelligent
way will require some research on what the best interface might be.

Currently, the method of inputting of the data is the same as for the model
data. The knowledge that this section of NESSUS/EXPERT contains is simply
information about the keywords pulled mainly from the User's Manual. However,
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this method is not very helpful or efficient for the user to work with when
entering such information. Possible enhancements include providing some
graphic aids that can illustrate various permutations on an element and some
intelligence of probability as it relates to FEM so that NESSUS/EXPERT can
make many of the decisfons and perform many of the needed calculations ftself,
rather than making the user do them.
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Introduction

An algorithm for the efficient computation of the elastostatic
response of a perturbed system discretized with finite elements has been
proposed [2} and implemented in the NESSUS code as part of the PSAM
development effort. Although this algorithm has been successfully used in
sensitivity studies of several structural systems with random parameters,
recent experience has indicated loss of stability for seemingly "small"
perturbations in some problem classes. These problems typically involve
approximate constraint equations which are embedded in the stiffness of
the unperturbed problem, and perturbations which result in the
modification of these constraint equations.

Finite element formulations for constrained problems using Lagrange
multipliers and the penalty method have enjoyed widespread use in the
recent past and have played an essential role in the development of
successful methods for certain classes of problems. The literature on

this subject is extensive and includes applications to:

0 The analysis of plate and shell structures allowing shear
deformation [7, 12, 16].

(o} Incompressible elasticity, e.g., rubber-like materials [5, 8].

o Deviatoric rate-independent plasticity [10].

o Incompressible flows, e.g., Stokes and Navier-Stokes equations

[5, 14, 15}, etc.

A fundamental assumption in the development of the perturbation
algorithm in [2] is that the response of the unperturbed system
constitutes a "good" approximation to the response of the perturbed
system. This will not, in general, be the case, if the prescribed
perturbation results in a noticeable change in the constraint equations
present in the unperturbed system. Violation of this condition will often
result in loss of stability and failure to converge. Thus, the presence
of constraint equations in the finite element formulation may impose

limits in the size of some perturbation parameters which are not
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immediately obvious. Additional analysis must then be performed in order
to determine exactly wvhat constitutes a "small" perturbation.

Perturbation methods based on Tayior series expansions about the
unperturbed solution have also been proposed by several researchers [3, 4,
11] and it is natural to ask hov these pathologies manifest themselves in
the solutions obtained by these methodS("““If “can  be shown that the
displéceﬁ;hf correction obtained in the first iteration is 1identical to
the first-order term in the Taylor series expansion, and the one obtained
in the second iteration is identical to the second-order term in the
series. Thus, the rate of convergence of the iterative algorithm is
closely related to the errors resulting from truncation of the Taylor
series. One advantage of the iterative algorithm in [2] is that an error
estimate (the force residuval) must be computed and is available at every

step of the iteration.

The Transverse Shear Constraint

The classical Poisson-Kirchhoff theory : of plates requires C1

continuity of displacement, as does the classical Bernoulli-Euler beam

theory. Hovever, the development of compatible C1 interpolations in
multi-dimensional cases is not straightforward, and considerable efforts
and ingenuity wvere invested in the development of the first generation of
finite element formulations for thin plate and shell problems [13].

In recent years, the Reissner-Mindlin theory of plates, which can
accommodate transverse shear strains, has enjoyed videspread use. 1In this

formulation, only C0 continuity of displacements is required, allowing the
construction of far simpler and less restrictive interpolation schemes.
As a result, finite element formulations for medium-thick plate and shell
problems have been developed, which retain accuracy even for thin plate
and shell situations {7, 12, 16]. However, as the thin 1limit is
approached, the "pure bending" modes dominate the solution, resulting in

the emergence of penalty constraint terms in the stiffness equations.
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The fundamental aspects of the problem may be observed in the one-
dimensional analog of the Reissner-Mindlin plate theory, i.e., the
Timoshenko beam. Thus, the Timoshenko beam theory may be used as a
simpler, more manageable model exhibiting the pathologies that afflict
Reissner-Mindlin plate theory. The total potential energy, including
shear deformation, for an elastic beam of rectangular cross-section with

thickness t and vidth b may be written as

3

L
Ebt~ ,d6,2 1 ¢ kGbt  dv 2
—12— (a; dx + i —_— (d—x - 9) dx - I VQdX (1)

1
m=3 2
(o]

Q tmy [
O

In this form, the first integral corresponds to the "pure bending" energy
in the beam, whereas the second integral represents the shear deformation
energy, and the third and last term accounts for the work done by the
applied transverse loading. As the thickness t is reduced, the bending

stiffness (Ebt3/12) will decrease much faster than the shear stiffness
(kGbt/2). In the 1limit, the shear stiffness term becomes a Lagrange

multiplier enforcing the condition that

vhich is the assumption made a priori in Bernoulli-Euler beam theory that

the rotation is the derivative of the transverse displacement.

The Discretized Problem

The finite element formulation for tﬂe Timoshenko beam problem using
linear interpolations for both translational and rotational degrees-of-

freedom produces an element stiffness matrix of the form



r y i '
000 0 13 a1 )
1 0-1 n®  h %2
e EI KGA & 2
k™ = P o o 1 . h (2)
T2
symm. 1 symm. EE

wherre h is the element length, E and G are the elastic and shear moduli, I
and A are the cross-sectional moment of inertia and area, and «k is é
shape-dependent factor to account for non-uniform shear distribution in
the cross-section. The particular case of a rectangular cross-section

coreesponds to I = bt3/12 and A = bt, vhere t is the beam thickness and b
ite width. In order to simplify the algebra, it is convenient to combine
the 'bending and shear stiffness terms to obtain

1 1 a1
R 3 R 32
K% = xGA GD 3 G- (3)
4
symm. (% + %)

vherme o is the ratio EI/(kGA) with dimension 1length squared. For a
rectangular cross-section, assuming K = 1 and incompressible material with

E « 3G, this ratio becomes o = t2/4.

Stapility Conditions

The iterative perturbation algorithm proposed in [2] can be

summarized by the folloving recursion relations:

K au™D) _f g oM (4a)
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;(n+1) . ;(n) R d"l(n+1) (4b)

vhere the symbol - is used to denote the perturbed quantities. The
consistency of the algorithm is provided for in the computation of the
right-hand-side of (4a), since the process is equivalent to the

minimization of the residual
r(n) . i - K ;(n)

vhich will be attained if u(n), = u, the exact value of the perturbed

“(n+1)

response. Stability is achieved if each displacement correction du

is smaller (in an appropriate norm) than the preceeding term, du(n). Both
conditions must be satisfied for the iteration to converge to the exact

solution.

The stability conditions can best be discussed in terms of an
amplification matrix, which is derived next. Consider the form of

equation (4a) in two consecutive iterations

du™D) g o™ Iteration (n)

du™ . f - g ™D Iteration (n-1)

and subtract the second from the first to obtain

g du{™D) _ g™ o k™ _ (-1,
du™D | g gu™ - g ™ (5)
Premultiplication by K'l on both sides yields

au™D _ 1 k! gy gut™
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vhere

A=-0-x1K (6)

is the desired amplification matrix. The iteration will be stable if the

d;(n) decrease monotonically, i.e., if the spectral radius of every
eigenvalue of A is less than unity.

In this form, the determination of the spectrum of the amplification
matrix A wvould require a considerable amount of computation. In general,

the eigenvectors of the perturbed stiffness matrix i will be different
from the eigenvectors of the unperturbed stiffness K. This will result in
a nonsymmetric amplification matrix A. In addition, the size and
structure of the amplification matrix in this form is entirely problem-
dependent, so that it does not easily lend itself to analysis for the

general case.

Stability Analysis

In order to circumvent some of the problems raised in the preceeding
section, a Von Neumann stability‘analysis is performed on the difference
pattern corresponding to the assembled system of equations at a typical
internal node. Similar techniques have been used in studies of the
stability of transient time integration schemes and nonlinear solution

algorithms [1, 9].

The fundamental concept underlying these techniques is
straightforvard, even though the detailed derivations often require
extensive algebraic manipulations. First, a set of stiffness equations
corresponding to a typical node is extracted from the assembled stiffness
equations. For a one-dimensional uniform mesh of tvo-noded beam elements,
this will be a set of two equations, relating the shear and moment at node
k to the translations and rotations at nodes k-1, k and k+1. Considering
the linearly interpolated Timoshenko beam element in (3), these equations

become



(7)

o I

vhere fk and m,  are the transverse shear force and moment at node k, and

and 6 are the transverse displacement and the rotation at that node.

Yk k
In order to capture the characteristics of the assembled system for
an arbitrary displacement vector, a sinusoidal displacement pattern of the

form

-4, eiwk (8)

is imposed on the nodes of the one-dimensional mesh. Here, u and © are

complex constants representing the relative magnitude and phase of the

displacements, and w = 2nh/1 vhere 1 is the (arbitrary) wavelength of the
prescribed sinusoidal displacement pattern. Hence, the value ® =0
corresponds to the two rigid-body modes (one translation and  one
rotation), and the value w = n will result in twvo displacement patterns
wvhich alternate signs betveen consecutive nodes. Any compatible -
displacement configuration of the discrete system may therefore be
obtained by appropriate combination of a number of these "basic modes"
wvith different w betwveen 0 and n.

Substituting (8) into (7) and using a few trigonometric identities,
the following expression for the effective stiffness at an arbitrary w may
be derived:
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% (1 - cosw) i sinw u
9)

x h e (

k Vfi sinw | 7,(1 + cosg) ‘B (1 -cosw) 9

= k(w) u

This relation may be regarded as a "condensed" counterpart of the global
stiffness equations, corresponding to a known displacement pattern (mode).
Since no assumptions have been made on the value of w, the equation above
must hold for all values of w that are compatible with the prescribed

boundary conditions.

The techniques outlined in the preceeding paragraphs may be used to
construct a "condensed" counterpart of the algorithmic relation in (5)

corresponding to a given value of w:

-

k(w) du™D) L k) au™ - k(o) au'™ (10)

An amplification matrix relating consecutive displacement corrections for

.a given mode may be obtained by premultiplying (10) by k’l(w) to obtain

d"l(n+1) - dl'l(n)

vhere

a(w) = (I - K 2 (w) k(w)) ' (11)

is the desired amplification matrix. Stability conditions associated with
particular classes of perturbations of the one-dimensional beam mesh
problem may then be derived from the study of the eigenvalues of (11).

An interesting class of perturbation problems involves the (not
necessarily uniform) elongation of the mesh. In the thin limit, the

transverse shear constraint will impose the condition that



on the displacement solution of the unperturbed system. However, in the
perturbed (elongated) beam, a different transverse shear constraint is in
effect, vhich is not satisfied by the displacement solution for the

unperturbed system, i.e.,

ELAP

dx

From the form of (1), it 1is clear that a very large amount of shear
deformation energy is generated vhen the displacement solution for the
unperturbed problem is imposed on the perturbed system, even for seemingly

"small" elongations of the mesh.

In order to obtain a stability limit for this class of problems, a
uniform elongation of the mesh is considered. The element length on the

perturbed mesh thus becomes h = h(l+¢), so that each element in the mesh

is elongated by the same amount. It follows that k'l(w) may be expressed

as
) g (1+cosw) + %—“ (1-cosw) - i sinw
-1 h 1
kK (w) = 7—m ———|. 2 (12)
4o (1 - cosw)z i sinw h (l-cosw)
and i(w) as
< (1 i sinw
i(w) B ) -cosw) (13)
, h(1l+¢) 2o
-i sinw —5 (l+cosw) + h(i+8) (l-cosw)

The resulting amplification matrix will be
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[ 2 2 T

= s 15 () o’ e o’ @ -1 1= (D) cord |
a(w) = " h2 (14)

i G o) - oG w0 J

>

and has eigenvalues of the form

s2 2

' £ 1 f 4

MO e - 3 e G- (1 a2 (138)
2.2

€ 1 ¢f 4

MW ene -7 e G 122 (13b)
vhere
2 b 2w

f© = (ZE) cot (i) (15¢)

All values of w which are relevant to the analysis of the discrete
system lie between O and n. The highest deformation modes representable
by the discretized system correspond to w = n, which will result in

|
Me=dNt T

Thus, even for relatively large ¢, the spectral radius of the
amplification matrix will be 1less than unity and the corresponding
deformation modes remain stable. At the opposite end of the spectrum lie
the rigid body modes, corresponding to w = 0. As w approaches 0, the

value of cot(%) becomes unbounded. This means that the rigid body modes

are unconditionally unstable for any nonzero value of €&, as expected.

An asymptotic analysis of the eigenvalues of the amplification matrix

for large values of € will yield
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>
n
—

c2£2
1+82

X = -

From the behavior of cot(%), it can be concluded that f may become quite
large for small values of w. This will result in |X2| > 1 even for

seemingly small €, and will cause the associated deformation mode to grow
unbounded. It should be emphasized, howvever, that the asymptotic
expressions above typically represent reasonable approximations to the
eigenvalues of a(w) only for values of € well above the stability limit
and cannot be used to approximate the eigenvalues within the stability

bounds.

From the above discussion, it is clear that the higher deformation
modes (with small values of w) will govern the stability of the algorithm.
This is in contrast with the well known results for the stability of
explicit time integration algorithms in dynamics, which are governed by
the highest frequency modes present in the discretized system. Any
attempts at enhancing the stability of the perturbation algorithm must
therefore take into account the fact that the displacement modes which
require stabilization are among the most needed to represent the response
of the perturbed system. Stability in the higher deformation modes must
not compromise the accuracy of these modes, which rules out the use of

conventional stabilization procedures.

A Numerical Example

A test problem was set up using a one-dimensional mesh of ten
Timoshenko beam elements (NESSUS Element 98) with h = 2.00 and t = 0.25,
and made of incompressible material (v = 0.50). Three different cases
vere analyzed, corresponding to the following boundary conditions:
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1. Cantilever beam. In this case, the lpvest displacement mode has
a wvavelength of four gimes the beam length, corresponding to
w=1/20. : ;o :

2. Beam with both ends pinned. The vavelength of the lowest mode
is twice the beam length, corresponding to w=n/10.

3. Beam with both ends fixed. The vavelength of the lovest mode is
equal to the beam length, corresponding to w=n/S.

The variation of the spectral radius of the eigenvalues of the
ampiifiéafiéh7mairix in the lowvest mode as a function of the -perturbétion-
parameter € is shovn in Figures 3 to 5. In all cases, loss of stability
vas observed at the value of £ corresponding to a spectral radius of 1.00,
as predicted by the analysis. Similar behavior has been observed using a
shell model (NESSUS Element 75) of the same problenm.

Conclusions

The stability conditions for the elastostatic perturbation algorithm
proposed in [2] have been described. A Von Neumann stability analysis of
the algorithm vas performed for the case of a uniform one-dimensional mesh
of linearly interpolated Timoshenko beam elements. Closed form
expressions for the stability limit in terms of the perturbation parameter
¢ wvere derived for the case of uniform elongation of the mesh by a factor
of (1+¢). This form of perturbation has been observed to result in loss
of stability with the current implementation of the algorithm even for
seemingly small values of the perturbation parameter €. The stability
limits predicted by the analysis are in full agreement with those observed-
in numerical experiments on one-dimensional meshes of linearly

interpolated beam and plate elements.

The development of general closed-form results for unstructured,
multi-dimensional meshes subjected to non-uniform distortion does not
appear to be practical. However, limited experience has indicated that
the results for the uniform mesh can be used to obtain a conservative
estimate to the stability limit for a more general mesh. Therefore, the
development of "smart" algorithms to adaptively adjust the size of the
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perturbation parameter in order to ensure convergence appears very

promising.
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Element
h=20
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Overall Length = 20.0
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- FIGURE 1: Mesh for the One-Dimensional Model Problem



FIGURE 2:

Typical Displacement Patterns for the Values of

w Used in the Numerical Example
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Spectral Radius

FIGURE 3: Spectral Radius of the Amplification Matrix as a

Function of the Perturbation Parameter
€ for h/t = 8.00 and w = n/20
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FIGURE 4: Spectral Radius of the Amplification Matrix as a

Function of the Perturbation Parameter
¢ for h/t = 8.00 and w = /10
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1.0 DISCUSSION

In private corréspondence of January 13, 1986 with Y. N. Chen of the
American Bureau of Shipping, we were informed that certain numerical algo-
rithms in the Wu/FPI code lacked the precision to ensure "small" errors
in resulting point probability estimates. Those subroutines for which
improvements were suggested were:

1. The normal CDF

2. The inverse normal ‘CDF

3. The gamma function

4. The shape parameter of the gamma function

5. The EVD parameters

ABS implimented improved numerical procedures in FPI and studied several
examples. Because the differences in point probability estimates observed by
ABS in old FPI and their new version seemed significant, a study was undertaken

to carefully examine the approximate forms and to introduce improvements where

appropriate. The improvement in the Euler constant (for EVD parameters)

for 8 digit accuracy was trivial and was implimented immediately. Numerical
algorithms for the other terms cited above were developed. Their performance
was carefully examined. A detailed des;ription of the approximation forms
and their behavior is presented in Chapter 2.

The forms presented in Chapter 2 were introduced into FPI, replacing
their less accurate counterparts. FPI analysis using the old and new ccde
was performed on several examples. The results are summarizedrin Chapter 3.

Differences in the results of the old and new code are far less than
observed by ABS in their version of the code. At this time, there is no

explanation for the discrepancy
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2.0 APPROXIMATE FORMS OF FUNCTIONS USED IN PROﬁABILITY CALCULATIONS

2.1 Gamma Function

Ref: Abramowitz, Handbook of Mathema:icalrFunctions, NBS.

R

[ -]
T(x) = I ¥l et e, x>0
o

The Asymptotic Formula

in T(x)z(x-%) lnx-x+%£n (-2”4-%-#3
300x

L1 : - 1 -
1260x°  1680x

(x > = in [Arg x| < m

After testing this fbrmula, we found that when x - 6, ten digit accuracy is
provided. If x is increased, this form is even more accurate.
In this program,x is divided into two parts X 2 6, and 0 < x < 6.

If x 2 6, use the asymptotic formula directly. If 0 < < 6, then let
N = INTEGER (x)
Z =6 -N+x

and calculate 2n I'(Z) using the asymptotic formula.

6-N
Then let, &n I'(x) = 2n I'(Z) -} fn(x + J - 1.0)
J=1

Example ’ x=1.9

Z=6.-1+1.9=6.9



¢n T(1.9) =2n I'(6.9) - (2n (1.9) + 2n (2.9) + &n (3.9) + &n (4.9)

+ 2n (5.9)

16.9)
(1.0)(2.9)(3.9)(4.9)(5.9)

= n

re6.9)
1.9(2.9(3.906.9G.9)

r(.9)=

If more accuracy is needed, then increase the 6 in the above algorithm to

7, 8, or a larger number



§
Fig. 1 Flowchart for Gamma Function Approximation

Reaq X

Yes
N = INT(x) Z=x
Z=6-N+x
=
Calculate 2n T (2)
\
Yes
No
6-N
fn T(Z) = &n I'(2Z) - } tn (X+J-1.0
J=1 :

‘l;.:

GAMMA = Z x P(&n T'(2))




Table 1. Performance of Gamma Function Approximation

x Asymptotic formula Exact
«9999999999 1.0
7!951350769877 .9513507699
.9181687423 .9181687424
.8974706962 .8974706964
.8872638174 .887263éi75
.8862269254 .8862269255
.8935153492 .8935153493
.9086387328 .9086387329
.93138377929 .9313837710
.9617658318 .9617658311
.9999999999 1.0
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Subroutine for C@a Function

456

DOUBLE PRECISION FUNCTION GAMMA(Y1,PI)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
X=Yi+1.D+0

Z=X

IF(X.GE.6.0D+0)G0 TD 4546

N=INT (X}

Z=(6.0D+0) -N+X

Y=1.D+@/Z%»2
ALG=(Z-.SD+0) #DLOG(Z) +.SD+0*DLOG(PI#2.D+0) —
Z—-(1.D+@0/(12.D+@%Z) ) # (((Y/D.14D+3-1.D+@/D. 105D+3) =Y+
1.D+@/.3D+2) »¥Y-1,D+0)-

IF(X.GE.6.D+@)G0 TO 457

ITE=6-N N

DO S J=1,ITE

A=X+J-1.D+08 .

ALG=ALG-DLOG (A)

CONTINUE

GAMMA=DEXF (ALG)

RETURN

END
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2.2 Bisecgion Method for the Shape Parameter a of the Weibull Distribution

The coefficient of variation Cx in terms of the shape parameter a of

the Weibull distribution is given as

C _///Fzgl +a) -1
X T'(l + 2a)

it 1s required td compute a.

Given CX'

Define
2 2
F(a)'—(1+Cx)I‘(1+a)+r(1+2a)

1.08

Approximate a, = (Cx) Then calculate F(ul), and let

a, = a + .1. Calculate F(az) and let Fl2 = F(ul) * F(uz).

If F12 < 0; we know that the root will be bracketed by a and a,.
Then use the general bisection method as described below.
If F12 > 0, there are four possible cases.

i

F(a) F(a)

Case 1 _ Case 2

F(a) F(a)

Case 3 : Case 4
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1f the function looks like Case 1 or Case 3, then let @, = ay3 a, =a, + 0.
If the function looks like Case 2 or Case 4, then let @y = a; a, =a, ~0.

Then calculate Fl12 until F12 < 0, at which time the bisection method can be used

(A) General Bisection Method

a, +a

1oag=t—2  (»
Fl13 = F(al) * F(u3)
If F13 < 0, a, = a,
1f F13 > 0, o, = ay

1f lal - °2| > 1077 go to (%) and repeact.

$11077 sToP; Let o = a

(B) Performance
Consider the Rayleigh Distribution

Cx = ,522723201

Asymptotic formula Exact

a 2.00000014531220 2.0
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Program: Bisection Method for Weibull Shape Parameter

IMPLICIT DOUBLE PRECISION (A-H,0-2)
F(X,COV,PI)=—(1.D0+COV##2) #GAMMA (X ,PI) ##2+GAMMA (2, #X,PI)
PI=4.D@#DATAN(1.D@)

COv=, 522723201

X1=COV##(1,08)

7 Fi=F (X1,COV,FI)
IF(DABS(F1).LE.1.D-7) GO TO 1
X2=X1+.1D2
F2=F (X2,C0V,PI)

F12=Fi=*F2

IF(F12.LT.0.) GO TO 22
IF(F1.6T.@..AND.F2.GT.F1) X1=X1-.1D0O
IF(F1.LT.8..AND.F2.GT.F1) X1=X2
IF(F1.6T.0..AND.F1.GT.F2) X1=X2
IF(F1.LT.0..AND.F1.GT.F2) X1i=X1-.1D2

Ga TO 7

20 CONTINUE

2 X3=(X1+X2)*.5DQ
F12=F{X1,C0V,PI)*F(X3,COV,FI)
IF(F13.LT.8.) X2=XZ
IF(F13.6T.D0.) X1=X3
DX=DABS (X1-X2)
IF(DX.GE.1.D-7) GO TD 2

1 ALPHA=1.D0/ X1
WRITE(»*,%) ° ALPHA = ",ALPHA
221=,95LC06

DO 1000 I=1,21

22=22+.@5D0

WRITE (#,%) ZZ,GAMMA(ZZ-1.D@,FI)
1000 CONTINUE

STOP

END
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2.3 CDF of Normal Distribution

i

Ref: Abramowitz: Handbook of Mathematical Functions, NBS
P-Q(x)-‘ TETF__ev 2 de
4
A g 3 4 5, >
= ] - Z(x)(blt + bzc + b3c + bat + bst,), ifx -0 )
2 3 4 5 .
_Z(X)(blt + b2c + b3c + bat + bst ) ifx <0
Where, 1 2
Z(x) = L e " 2%
Y 2w
1
t= 1+ px
p = 0.231621 ‘
b, = 0.319381530 |
b2 = -,356563782
b3 = 1.781477947
b4 = -]1,821255978
b5 = 1.330274420

This approximation is Advertised to produce errors in P of less than 10-7.

(See performance on Tablé 2, p. 15.)
accuracy is being realized.
errors are somewhat larger.
analysis is -5 < x < 5, and at worst

It is important to note that we
in Table 2, p. 15. During this inve

in the Abramowitz ctable.

When x > 0, it appears that this level of-

. For the very small P values associated with x < 0,

But the operational range for structural reliabilit

we are getting four place accuracy.
cannot verify the accuracy of column (4)

stigation, some anomolies were discovered
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Program: Standard Normal CDF

FROGRAM CDFFDF

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /TWO/ PILSPIZ
FPI=4.DRB*DATAN(1.D@)
SPIZ=1./(DSERT(2.D@*FI1))

=-=11.D82
DO 1 I=1,22
X=X+1.D@

FPHI=CDFNOR (X)

XPHI=XINV(FHI)

WRITE(#,%) X,PHI,XFHI
1 CONTINUZ

STOF

END

DOUBLE FPRECISION FUNCTION CDFNOR (2D
C THIS FUNCTION COMFUTES THE NGRMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /TWO/ PI,SFPI2
DATA A/Q@.319328153D0/,B/-0.3565463278208/,C/1.7814773327Da/,

+D/-1.821285%78080/,E/1.338274429LQ/
EZ=—(Z%#2) % ,5D@
CDFNOR=0.0D2 )
IF(EZ.LE.-200.0D@) GD 7O 1
IX=SFI2*DEXF(EZ)

IF(DABS(Z).6T.6.D@) GO TO 2
T=1.D8/(1.D@+(0.2316412DB%*DABS(Z)))
CDFNOR=ZX#T# (A+T# (B+T# (C+T+(D+T*E))))

GO 7O 1

22=1.09/(2*2)

CDFNOR=ZX#{1.D0-22%(1,DQ0-2.DA%Z2#(1.00-5.D90#22:))/D&ES.2)

1 IF(Z.57.0.900) CDFNDR=!.,Q9D@-CDFNOR
RETLAN
END

+3
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2.4 Bisection Method for the Inverse Normal CDF, x= 0-1(P)

Ref: Abramowitz, Handbook of Mathematical Functions, NBS

First, the following method is used to obtain an apptoximatioh to X.
2

C° + Cl,t + C2 t

2 3

1+ dl t + d2 t + d3 t

x, = o (p) = ¢t -

where,

t = Y=2 2n P, 0<P=.5
C_ = 2.515517
C, = .802853
c, = .010328
d, = 1.432788
d, = .18926

.001308

(=¥
L]

This apbroximation gives only four digit accuracy.

Define F(x, P) = P = &(x).

1
F(x, P) looks like

1. Let x, = Q_l(P) using the "crude” approximation above. Then

F(xl,P)
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*
2. Let F, = F(x;, P) (4)
If F, >0, x, = x; + .001
If F, <0, x, = x; = .001
If F, =0, STOP

Then in the second iteration, let
F2 = F(xz, P)

Calculate F12 = F(x,, P) =% F(xz, P)

1;
If F12 < 0, use general Bisection Method

If F12 > 0, then X, = Xy

1

go back to (A) and repeat.

* , ,
The function ¢(-) is obtained using the form of Sec. 2.3.
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Read x

P = d(x)

X, = o1 (x)

= x_ + 001

=x; -.001

Use Bisection Method

4

XINV = X1

where F(x, P) = P - ¢(x)

Fig. 2 Flow Chart for Inverse Normal Approximation



C-15

Table 2. Performance of Normal and Inverse cdf Approximations

(1) (2) (3) (4)
\\\\\\\\> P = ¢(x) using form ¢-l(P)using bisection (P=$(x) exact as published
x for CDF (Abramowitz) method in Abramowitz
-10 1.619845601 E-24 -9.99999999 7.6199 E-24
-8 6.220925810 E-16 -7.99999999 6.2210 E;16
-6 9.901218571 E-10 -5.99999999 9.8659 E-10
=4 3.168603459 E-5 -3.99999999 3.1671 E-5
-3 1.349967223'2-3 -3.00000000 1.349898032 E-3
-2 2.275006201 E-2 -2.00000000 2.275013195 E-2
-1 1.586552595 E-1 -.99999999 1.586552540 E-1
0 4.999999994 E-1 3.éll90816 E-11 5.0000 E-1
1 8.413447404 E-1 . 99999999 8.413447460 E-1
2 9.772499379 E-1 2.00000000 9,772498680 E-1
3 9.986500327 E-1 3.00000000 9.986501019 E-1
A 9.999683139 E-1 3.99999999 9.999683288 E-1
6 9.999999990 E-1 4.99999998
8 1.0 7.9911351772922

i

i

i

Column (4) and
column (1) should

compare. See

Approximate form as The inverse is obtained

l described in Sec. 2.3 using the column (2)

values with the algorithm

described in Sec. 2.4. comments on p. 10.

Columns (1) and (3)

should compare.
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Program: Bisection Method for Inverse Standard Normal CDF

DCULBLE PRECISION FUNCTION XINV (Z)
I7=_ICIT DOUBLE FRECISION (A-H,0-Z)
F(X,P1)=P1—~CDFNOR (X)

Y=2Z

IF(Z.67.0.5D082) Y=1.D0@-Z
IF(Z.EQ.1.D@) STOP

Co=2.515517D0

Ci=0.802853032

C2=0.010328D02

D1=1.432788D2

2=0. 18924902

D3=0.00132800
T=(-2.D@#DLOG(Y) ) »%,5DQ@

DNUM=CO+T# (C1+T*C2)

DNOM=1.0D0+T# (D1+T# (D2+T%D3))

X=T- (DNUM/DNOM)

IF(Z.LT.®.5DQ) X=-X
X1=X
F1=F(X,2)
82 IF(F1.GT.2.D0Q) X2=X1+.001DQ

IF(F1.LT.2.D@) X2=X1-.0@1D0
IF(F1.EQ.0.D8) GO TO 2
F2=F (X2,2)
F1I=F1%F2
IF(FL2.LE.2.D@) GO TO 8
X1=x2
Fl=F2
GO TO 80
3 XT=(X1+X2)*.5D@
F13=F (X1,Z)#F (X3,2)
IF(F1Z.LE.2.D@) X2=X3
IF(F1Z.6T.0.D0) X1=XZ
DX=DABS (X1=-X2)
~ IF(DX.BT.1.D-1@) GO TO 8
2 XINV=X1
RETURN
EMD
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3.0 EXAMPLES COMPARING OLD AND NEW FPI

Following are several examples for which comparisons of results from
old and new FPI are presented. These examples were those studied in an
" AME master's report by Jack T. L. Chang entitled, "Investigation of the Wu
Algorithm for Computing Structural Reliability" (October 1985). In summary,
introduction of the improved algorithms did not significantly alter the
resuits, at least for the examples considered.

Results for the improved ABS FPI program for those examples considered
are given in parentheses. In Examples 4 and 5, the results of the improved
versions of the ABS and the UA codes differ significantly. There is at this
time no explanation for the disagreement. An efficient Monte Carlo code
for point probability estimates is under development. It will be able to
check FPI calculations, but because the same numerical algorithms will be

in both UA codes, the comparisons may not resolve this issue.
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EXAMPLE 1 Note: ABS program results in parentheses

=DATA
FAILURE FUNCTION

g "R~-(L+D)

FAILURE EVENT : 9 < 0

VAR-ABLE | DISTRIBUTION | MEAN/MEDIAN® | STD. DEV. C.0.V.

R WEIBULL 50. 5.0 0.1
L EVD 10. 2.0 0.2
D _LOGNORMAL 20. * ~ 3.034 0.15
ORIGINAL NEW . DIFFERENCE
PROGRAM(I) PRDGRAM(Z) 2(3)
8 2.768 2.783 0.54
R-F (2.783)
Pf 2.821 E-3 2.6931 E-3 4,79
(2.6931 E-3
[} 2.692 2.707 0.55
Wu/FPI (2.680)
Pt 3.554 E-3 3.398 E-3 4.59
(3.682 E-3)
Monte

Carlo(4) Pf 3.600 E-3‘

(1) Developed by C. Kelly, Y. T. Wu
(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull
" shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters
(3) Assumes new program is exact
(4) Does not have improvements in numerical algorithms
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EXAMPLE 2 Note: ABS program results in parentheses

-DATA o!
FAILURE Function : g = ——Ei- ( 2N )b + c% (2n )c - €g

FAILURE EVENT : g < 0

VARIABLE | DISTRIBUTION | MEAN/MEDIAN* | STD. DEV. C.0.V,
cs EVD 0.0015 0.00015 0.1
of LOGNORMAL 310.0 * | 145.10 0.43
e} LOGNORMAL 9.14  * 0.458 0.05

ORIGINAL NEW DIFFERENCE
procram‘?? | procram(? z(3)
g | 2.881 2.881 0.00
R-F : (2.881)
pe | 1.981 E-3 1,983 E-3 0.10
(1.983 E-3)
g | 2.851 2.850 0.04
Wu/ FPI (2.826)
P | 2.183 E-3 2.183 E-3 0.00
(2.215 E-3)
Monte
carlo ()| PE | 2.123 E-3

(1) Developed bv C. Kelly, Y. T. Wu

(2) with improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c¢) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 3 Note: ABS program results in parentheses

-DATA
FAILURE FUNCTION : g = Xl + sz + 2X3 +X“ - 5¢( XS + X6 )

FAILURE EVENT :9<0

VARIABLE DISTRIBUTION MEAN/MEDIAN#* STb. DEV. | C.0.V.
X1 LOGNORMAL 119.4 * 12. 0.1
X> LOGNORMAL 119.4 * 12, 0.1
X3 LOGNORMAL 119.4 * 12. 0.1
X LOGNORMAL 119.4 * 12. 0.1
Xs LOGNORMAL . 38.31 * 12. 0.3
Xs LOGNORMAL 47.89 * 15. 0.3

ORIGINAL NEW ] DIFFERENCE
procrax‘®’ | progran(® 5 (3)
B 2.348 2.348 0.00
R-F - (2.348)
Pf 0.942 E-2 0.943 E-2 0.1
(0.943 E-2)
g 2.235 2.234 0.04
Wi/ FPL (2.256)
Pf 1.274 E-2 1.274 E-2 0.00
(1.204 E-2)
Monte
1.221 E-2
Carlo(a) Pf

(1) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
{(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 4 Note: ABS program results in parentheses

=DATA

: Q= + + + X + - - - - -
FAILURE FUNCTION g Xl Xz X3 74 XS Yl Yz Y3 Yd YS

FAILURE EVENT :9<0

VARIABLE DISTRIBUTION MEAN/MIDIAN* STD. DEV. C.0.V.
X3 WEIBULL 10.0 3.5 0.35
X2 WEIBULL 10.0 ) 3.5 0.35
X3 WEIBULL 10.0 3.5 0.35
Xu WEIBULL 10.0 3.5 0.35
Xs WEIBULL . 10.0 3.5 0.3s
Y1 EVD 5.0 1.75 0.35
Y2 EVD 5.0 1.75 0.35
Y3 EVD 5.0 1.75 0.35
YS EVD 5.0 1.75 0.35

ORIGINAL NEW ' DIFFERENCE
PROGRAM(l) PRDGRAM(Z) 2(3)
8 2.945 2.959 0.47
R-7 (2.959)
pf | 1.615 E-3 1.545 E-3 4.53
(1.545 E-3)
g | 2.866 2.877 0.38
We/FP1 (2.810)
Pf 2.078 E-3 2.011 E-3 3.33
(2.477 E-3)
Monce 140 E-3
2. -
Carlo(a) Pf

(1) Developed by C. Kelly, Y. T. Wu .

(2) With improvements to numerical algorithms; (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 5 Note: ABS program results in parentheses

<DATA
FUNCTION : § = X+ X_ + + + - - - - -
rAILugz cT g 1 2 x3 x4 xs Yl 12 73 Y, ;
FAILURE EVENT £ g<0
VARIABLE | DISTRIBUTION | MEAN/MEDIAN®* | SID. DEV. | C.0.V.
X EVD - 10.0 4.0 0.4
X2 WEIBULL 10.0 4.0 0.4
X3 LOGNORMAL 9.2847 = 4.0 0.4
Xs WEIBULL 10.0 4.0 0.4
Y, EVD 5.0 2.0 0.4
Y2 WEIBULL 5.0 2.0 0.4
Ys LOGNORMAL 4,.6424 % 2.0 0.4
Yy EVD 5.0 2.0 0.4
Ys WEIBULL 5.0 2,0 0.4
ORIGINAL NEW | DIFFERENCE
proGRAM( L) proGRaM(?) 2(3)
8 2.649 2.652 0.11
R-F I 1. (3.652)
Pf 4.031 E-3 4.003 E-3 0.70
(4.003 E-3)
8 2.696 2.698 0.07
Wa/FPI (2.658)
P 3.508 E-3 3.491 E-3 0.49
(3.984 E-3)
Monte _
.643 E-
Carlo(4) Pf 3.643 E-3

(1) Developned bv C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (2) gamma functiom, (b) Weibyll -
shape paramecter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program 1is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 6 Note: ABS program results in parentheses
=DATA 4T

FAILURE FUNCTION : 9 = R = ( o2 )

FAILURE EVENT :9 <0

[VARIABLE | DISTRIBUTION | MEAN/MEDIAN® | STD. DEV. | C.0.V.
R NORMAL 170. 2s5. 0.14706
D NORMAL 29.4 3. 0.10204
T - 50.000 ORIGINAL NEW | DIFFERENCE
’ procram(Y? | procRraM(? 2(3)
B | 2.902 2.902 0.00
R-F : (2.902)
Pf | 1.856 E-3 1.856 E-3 0.00
(1.856 E-3)
g8 | 2.835 2.834 0.03
PE | 2.296 E-3 2.297 E-3 0.04
(2.306 E-3)
Exact
solution| Ff 2.30L E-3

(1) Developed by C. Kellv, Y. T. Wu

(2) with improvements to numerical algorithms: (a) gamma function, (b) .Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters '

(3) Assumes new program is exact
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T = 20,000

T = 5,000

ORIGINAL NEW ] DIFFERENCE
proGRaM( Y procran(? z(3)
B 5.273 5.273 0.00
R-F .
PE 0.673 E-7 0.673 E-7 0.00
g 5.111 5.110 0.02
Wu/FPI
Pf 1.599 E-7 1.612 E-7 0.81
Exact
solution Pt 1.502 E-7
ORIGINAL NEW ) DIFFERENCE
PROGRAM(l) PROGRAM(Z) 2(3)
8 6.492 6.492 0.00
R-F
Pt 4,238 E-11 4,236 E-11 0.005
g 6.484 6.484 0.00
Wu/FP1 _
Pf 4,453 E-11 4,459 E-11 0.02
Exact )
solution| P£ 4,646 E-11
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EXAMPLE 7 Note: ABS program results in parentheses

=DATA

FATLURE FUNCTION : § = R - v 300p2 4 1.9272

FAILURE EVENT : g<0

VARIABLE | DISTRIBUTION | MEAN/MEDIAN®* | S1D. DEV. | C.O.V.
R WEIBULL %48.0 3.0 0.0625
P LOGNORMAL 0.987 * 0.16 0.16
T . EVD 20.0 2.0 0.1

ORIGINAL NEW | DIFFERENCE -
procraMY? | procram(?’ z(3)
B | 3.094 3.085 0.29
R-F (3.085)
Pf 0.988 E-3| 1.018 E-3 2.95
(1.016 E-3)
8 2.893 2.886 0.24
Wa/FPL (2.868)
Pf 1.911 E-3 1.950 E-3 2.0
(2.064 E-1
Monte
car1o ()| PE 1.800 E-3

(1) Develoved by C. Kelly, Y. T. Wu

(2) Wich improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program 1s exact

(4) Does not have improvements in numerical algorichms
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EXAMPLE 8

=DATA

FAILURE FUNCTION : § = K- S vV 1A

FAILURE EVENT : 9g<0

VARIARLE DISTRIBUTION MEAN/MEDIAN® STD. DEV. C.0.V,
K WEIBULL 150. 25.0 0.16667
3 EVD 100. 20.0 0.2
A LOGNORMAL 0.1 * 0.1414 1.0
u = 100 ORIGINAL NEW ) DIFFERENCE
s (1) (2) (3)
o = 20 PROGRAM PROGRAM Y4
s
8 2.060 2.067 0.34
R-F -
Pf 1.968 E-2 1.938 E-2 1.55
8 1.967 1.974 0.35
Wu/FPIL
Pf 2.461 E-2 2.419 E-2 1.74
Monte
2.412 E-
Carlo(A) Pi E-2

(1) Developed by C. Kelly, Y. T. Wu

(2) Wich improvements to numerical algorichms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 8
~DATA
FAILURE FUNCTION : § = K = S /%A
FAILURE EVENT :g<0
VARIABLE DISTRIBUTION MEAN/MEDIAN* STD. DEV. C.0.V.
X WEIBULL 150. 25.0 0.16667
s EVD 30. 16.0 0.2
A LOGNORMAL 0.1 * 0.1414 1.0
u = 80 ORIGINAL NEW DIFFERENCE
s (1) (2) (3)
o, = 16 PROGRAM PROGRAM 2
B | 2.482 2. 490 0.32
R-F
Pf | 6.534 E-3 6.382 E-3 2.38
B | 2.380 2.389 0.38
Wu/FP1
Pf | 8.672 E-3 8.453 E-3 2.59
Monte
car1o @) | PE 8.630 E-3

(1) Developed bv C. Kelly, Y, T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvemencs in numerical algorithms
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EXAMPLE 8 Note: ABS program results in parentheses

-DATA
FAILURE FUNCTION : § = K - § /74

FAILURE EVENT : g<0

VARIABLE | DISTRIBUTION MEAN/MEDIAN® STD. DEV, C.0.V.
K WEIBULL 150. 25.0 0.16667
S EVD 60- 12.0 0.2
A LOGNORMAL 0.1 =* 0.1414 1.0
L o= 60 ORIGINAL NEW _ DIFFERENCE
s (1) 2) | (3)
o = 12 PROGRAM PROGRAM 4
B 3.006 3.018 0.40
R-F (3.018)
Pf 1.323 E-3 1.272 E-3 4.01
(1.272 E-3)
8| 2.892 2.905 0.45
Pf 1.914 E-3 1.835 E-3 4.30
(1.886 E-3)
Monte
Carlo(4) Pf 1.870 E-3

(1) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms; (a) gamma function, (b) Weibull
shape parameter, (c¢) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorichms
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AMPLE 9 Note: ABS program results in parentheses
-DATA
FAILURE FUNCTION : 9 = & - N, { fop o 1= fpp )
G (Y ey E (Y 8¢y)

FAILURE EVENT :9<0

VARIABLE | DISTRIBUTION | MEAN/MEDIAN* | SID. DEV. | C.0.V.
3 LOGNORMAL 1.0 * 0.3132 0.3
£pp NORMAL 0.7 0.07 0.1
G LOGNORMAL 0.222 = 0.0956 0.4
Y LOGNORMAL 1.0 * 0.1517 0.15
Aco EVD 0.0005 0.00008 | 0.16
B LOGNORMAL 1.673  * 0.7208 0.4

ORIGINAL NEW | DIFFERENCE
procra‘?) | procran(? 2(3)
8 | 2.38 2.385 0.04
. : (2.385)
pe | 8.552 E-3 8.550 E-3 0.02
(8.530 E-3)
8 | 2.338 2.338 0.00
Wu/FPI (2.315)
P | 9.696 E-3 9.691 E-3 0.05
(10.320 E-3)
Monte
carlo(4)| PE | 10,020 E-3

(1) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 10
=DATA 2
FAILURE FUNCTION : 9 = R® - X; - X,
FAILURE EVENT t g<O0
VARIABLES X ,i=1, 2.
All Xi are Chi-Square distribution
DISTRIBUTION with degree of freedom v =1 .,
MEAN 1.0
STD. DEV. 1.4142
C. 0. V. 1.4142
CONSTANT , R 3,4,5.
ORIGINAL NEW ) DIFFERENCE
R =3 _ procray 1) procRAM %) z(3)
g | 2.584 2.583 0.04
R-F ;
Pf 0.489 E-2 0.490 E-2 0.20
8 2.178 2.178 0.00
Wu/FPL -
Pf 1.471 E-2 1.471 E-2 0.00
Exact
solution| Pf | 1.110 E-2

(1) Develored by C. Kellv, Y. T. Wu
(2) Wich improvements to numerical algorithms: (a) gamma funcciom, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters
. (3) Assumes new program 1s exact
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ORIGINAL NEW DIFFERENCE
program‘ ) pRoGRaM(2) z(3)
g | 3.676 3.675 0.03
R-F
PE | 1.186 E-4 1.189 E-4 0.08
g | 3.393 3.390 0.09
Wu/FP1
Pf 3.456 E-4 3.494 E-4 1.09
Monte
carlo(®)| PE 3.350 E-4
\
ORIGINAL NEW DIFFERENCE
procrad(®) | procram(? x(3)
B | 4.735 4.735 0.00
R-F _
Pf 1.096 E-6 1.098 E-6 0.18
g 4.545 4.535 0.22
Wu/FPIL
Pf 2.745 E-6 2.879 E-6 4.65
Exact
Pf 3.730 E-6

solution
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EXAMPLE 10

=DATA

FAILURE FUNCTION

FAILURE EVENT

' )2
g=R =Xy -Xy=X3-X,= Xg

tg<0

VARIABLES Xi ,1=1,2 3,45,
DISTRIBUTION 3i§hx3e§§§ecﬁi'§322§:md*3‘5‘?“?*°“
MEAN 1.0 '

STD. DEV. 1.4142

c. 0. V. 1.4142

CONSTANT , R 3,4,5.

-COMPARISONS OF SAFETY INDEX AND PROBABILITY OF FAILURE , Pf

ORIGINAL NEW ) DIFFERENCE
PROGRAM(l) PROGRAM(Z) 1(3)
? 2.049 2.049 0.00
R-F
Pf 2.023 E-2 2.022 E-2 0.05
8 1.302 1.301 0.08
Wu/FPI
Pf 9.652 E-2 9.655 E-2 0.03
Exact
solution| Ff 1.090 E-;
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ORIGINAL NEW DIFFERENCE
procrax‘}? | progran(? 7(3)
Bl 3.241 3.241 0.00
R-F
Pe | 5.954 E-4 5.966 E-4 0.20
8 | 2.447 2.447 0.00
Wu/FPI
PE | 7.220 E-3 7.195 E-3 0.38
Exact
solution Pf 6.840 E-3
1,
ORIGINAL NEW DIFFERENCE
procraM(l) | progran(?’ 7(3)
8 | 4.380 4.380 0.00
R-F
Pf | 5.930 E-6 5.951 E-6 0.35
Bl 3.574 3.578 0.11
Wu/FPI
PE | 1.761 E-4 1.733 E-4 1.62
Exact
Pf | 1.390 E-4

solution
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EXAMPLE 10

=DATA 2
FAILURE FUNCTION : ¢ = R “X)=X3=X3-X,~X5~Xg=X,~Xg-Xg-X,

FAILURE EVENT :g < 0

VARIABLES x4, 41=1,2,3,4,5,6,7,8,9,10.
DISTRIBUTION ﬁihxje;::ecgz‘:g::;::mdi:t:illaufion
MEAN 1.0

STD. DEV. 1.4142

c. 0. V. | 1.4142

CONSTANT , R 4,5,6.

-COMPARISONS OF SAFETY INDEX AND PROBABILITY OF FAILURE , Pf

ORIGINAL NEW . DIFFERENCE
R=24 PROGRAM(l) PRDGRAM(Z) 2(3)
8 2.595 2.595 0.00
R-F
Pf 4.733 E-3 4.725 E-3 0.17
B 1.254 1.254 0.00
Wu/FPI -
Pf 1.049 E-1 1.050 E-1 0.09
Exact
Pt 0.060 E-2
solution
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ORIGINAL

NEW DIFFERENCE
procraM‘Y) | procran(® z(3)
8| 3.815 3.815 0.00
R-F
Pf | 6.808 E-5 6.819 E-5 . 0.16
B8 | 2.749 2.750 0.04
Wu/FP1L
Pf | 2.988 E-3 2.984 E-3 0.13
Exact
solucion Pf 5.350 E-3
ORIGINAL NEW DIFFERENCE
procrax®’ | procram(? 7(3)
8 | 4.977 4.976 0.02
R-F -
Pf | 3.266 E-7 3.243 E-7 0.71
g | 3.812 3,815 0.08
Wu/FPI
Pf | 6.885 E-5 6.818 E-5 0.98
Exact
Pf 8.420 E-5

solution
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EXAMPLE 10

=DATA
FAILURE FUNCTION

2
$: g = R -X1-X2-X3-Xu4~X5-X6-X7-X8-X9-X10-X11-X12
=X13-X14=-X15-X16-X17-X18-X19-X20

FAILURE EVENT t1g<0

VARIABLES X, 1=1,2,3,...,18,19,20. ;
All Xi are Chi-Square distribution O

DIS:RIBUTION with degree of freedom v = 1 .

MEAN 1.0

STD. DEV. 1.4142

C. 0. V. 1.4142

CONSTANT , R 5,6,7,8.

-COMPARISONS OF SAFETY INDEX AND PROBABILITY OF FAILURE , Pf

ORIGINAL NEW | DIFFERENCE
R =5 procrad‘?) | program(? 7(3)
8 2.827 2.828 0.04
R-F
pe | 2.351 E-3 2.340 E-3 0.27
g | 0.441 0.440 0.23
Wu/FPI
pe | 3.293 E-1 3.300 E-1 0.21
Exact
2.010 E-1
solution Pf 0
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ORIGINAL NEW ] DIFFERENCE
procram‘Y) | procran(® 2(3)
B 4,098 4,099 0.02
R-F _
Pf 2.084 E-5 2.080 E-5 0.19
8 2.122 2.121 0.05
Wu/FP1L
Pf 1.692 E-2 1.694 E-2 0.12
Exact
solution| P£ 1.540 E-2
\
ORIGINAL NEW _ DIFFERENCE
PROGRAM(l) PROGRAM(Z) z(3)
B8 5.311 5.310 0.02
R-F
Pf 5.464 E-8 5.479 E-8 0.27
8 3.370 3.371 0.03 -
Wu/FPI
Pf 3.755 E-4 3.744 E-4 0.29
Exact
solution]| P£ 3.070 E-4
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ORIGINAL NEW DIFFERENCE
rrocrax‘Y? | procran(® 7(3)
. 6.482 6.481 .0.02
R-F ‘
Pf | 4.517 E-11 | 4.553 E-11 0.81
g8 | 4.502 4.505 0.07 .
Wu/FPL '
Pf | 3.365 E-6 3.320 E-6 1.4
Exact
Pf | 1.680 E-6

solution
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EXAMPLE 11

-DATA

FAILURE FUNCTION : g = 2.5 - N ——CS H 1og —Po + 8P
: - 1+ e Po

FAILURE EVENT tg<o0

VARIABLE DISTRIBUTION MEAN/MEDIAN* STD. DEV. C.0.V.
N NORMAL 1.0 0.1 0.10
Ce NORMAL 0.396 0.099 0.25
¢, NORMAL 1.19 0.178S 0.15
H NORMAL 168.0 8.4 0.05
P, NORMAL 3.72 0.186 0.05

ORIGINAL NEW ] DIFFERENCE
PROGRAM(I) PROGRAM(Z) 1(3)
B8 2.439 2.439 0.00
R-F
Pf 7.363 E-3 [ %.363 E-3 0.00
B 2.499 2.499 0.00
Wu/TPI
P 6.235 E-3 6.229 E-3 0.10
Monte
Carlo(a) PE 6.330 E-3

(1) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 12
~DATA 22
FAILURE FUNCTION : = NCLE ° =R Q
FAILURE EVENT g < 0
VARIABLE | DISTRIBUTION | MEAN/MEDIAN® | STD.DEV. C.0.V.
N NORMAL 1.0 0.2 0.20
c NORMAL ' 3.85 0.2695 0.07
L NORMAL 93.4 5.604 0.06
B NORMAL 15.0 0.9 0.06
R NORMAL 0.7 0.098 0.14
Q EVD 9146.0 3201.1 0.35
ORIGINAL NEW DIFFERENCE
rrocram?? | procran(?’ 2(3)
B | 2.715 2.715 0.00.
R-F -
Pf | 3.309 E-3 3.315 E-3 0.18
g | 2.651 2.651 0.00
W/ FPL
Pf | 4.019 E-3 4.017 E-3 0.05
Monte
carlo(¥)| PE | 4.043 E-3

(1) Developed by C. Relly, Y. T. Wu

(2) with improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD paramerers

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 13
-DATA
FAILURE FUNCTION : = A+BXR +cYsi+pz @
FAILURE EVENT : g < 0
VARIABLE | DISTRIBUIION | MEAN/MEDIAN® TD. DEV. C.0.V.
X WEIBULL 10.0 3.0 0.30
Y EVD 5.0 1.5 0.30
p LOGNORMAL 9.5782 = 3.0 0.30
R EVD 10.0 3.0 0.30
s LOGNORMAL 4.7891 # 1.5 0.30
Q WEIBULL 10.0 3.0 0.30
.- g ORIGINAL NEW | DIFFERENCE
y = 3 proGramY) | procran(? 2(3)
8| 2.625 2.631 0.23
R-F
Pf | 4.327 E-3 4,252 E-3 1.76
B | 2.720 2.724 0.15
Wu/FP1
Pf | 3.269 E-3 3.223 E-3 1.43
Monte
carlo(®)| PE | 3.357 E-3

(1) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorichms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms
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EXAMPLE 13
~DATA 3 4 s
FAILURE FUNCTION : = A+ BXR° 4+ CYS +D2ZQ
FAILURE EVENT $1g<0
VARIABLE DISTRIBUTION | MEAN/MEDIAN® STD. DEV. C.0.V.
X WEIBULL 10.0 3.0 0.30
Y EVD 5.0 1.8 0.30
z LOGNORMAL 9.5782 * 3.0 0.30
R EVD 10.0 3.0 0.30
s LOGNORMAL 4.7891 * 1.5 0.30
Q WEIBULL 10.0 3.0 0.30
a =3 ORIGINAL NEW DIFFERENCE
B =4 (1) (2) 3
y =5 PROGRAM PROGRAM 2(3)
B | 2.290 2.290 0.00
R-F
Pf | 1.102 E-2 1.102 E-2 0.00
8| 2.410 2.422 0.50
Wu/FPI
Pf 7.983 E-3 7.720 E-3 3.41
Monte
Carlo(4) Pf 8.020 E-3

(1) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull
shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters )

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorichms
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EXAMPLE 13
=DATA : : .
FAILURE FUNCTION : = A+ BXR +CYS +D 2 QS
FAILURE EVENT :g<0
VARIABLE | DISTRIBUTION | MEAN/MEDIAN® TD. DEV. C.0.V. |
X WEIBULL 10.0 3.0 0.30
Y EVD " 5.0 1.5 0.30
z LOGNORMAL 9.5782 = 3.0 0.30
R EVD 10.0 3.0 0.30
S LOGNORMAL 4.7891 « 1.5 0.30
Q WEIBULL 10.0 3.0 0.30
a =5 ORIGINAL NEW DIFFERENCE
B =3 (1) (2) (3)
y =5 PROGRAM PROCRAM %
8 | 2.388 2.392 0.17
R-F
Pf | 8.478 E-3 8.369 E-3 1.30
8 | 2.546 2.549 0.12
Wu/FP1 -
Pf | 5.451 E-3 5.405 E-3 0.85
Monte
carlo(4)| PE | 5.776 E-3

(1) Developed by C. Kelly, Y. T. Wu

(2) Wich improvements to numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters
(3) Assumes new program is exact
(4) Does not have improvements in aumerical algorithms
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1.0 INTRODUCTION

1.1 Some Definitions and Preliminary Remarks

Let Y denote the response variable. Assume that Y will be a function

of the random vector % of design factors

where Y = f(g) (1.1)
i = (Xl’ xz, . .. XK)
This function is explicit and defined only through the data base generated

by NESSUS,

SARH 1=1,J (1.2)

where J is the number of solution points.

It will be assumed that the basic statistical parameters for each Xi will be

the mean and standard deviation, denoted as,.

: 2
E(Xi) =y V(Xi) oy (1.3)
The vector parameter for Xi is defined as,
o, = (”i' oi) (1.4)

And the parameter for ¥ is a vector of K elements Gi, for a total of 2K statistical

parameters

. 6.) (1.5)

g = (61, 82, . . K

As input to FPI, the statistical distributions of each X1 must be specified.

This includes the values of ei.
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Consider a random sample of Xi, Xi j 3 J =1l,n. The sample size is n.
]

2
The estimators of ui and ¢

5 are,

n

y, =1 (1.6)

U, == ) X

i n j=1 1,3
n

"2 -1 _ 02 1.7

i) (X3 ¥y _ 1.7
=1

The estimated parameters for Xi are
0. = (u ; 1.8)
8y (“i, 01) (
and for all %,
0 = (8, © o (1.9)
6 (el, e2, . eK)

a

Using O, FPI constructs the distribution function (cdf) of Y, FY(y, 0).
This is an estimate of the underlying cdf FY(y), . . . the function which

nature has chosen. An illustration of FY is provided in Fig. 1.1.

-

The distribution parameters © used to construct FY are based on random

samples. But the estimators O are random variables themselves. There is
uncertainty in the parameters which is reflected in Fy. This uncertainty
can be described by error bounds (or confidence intervals) as illustated

in Fig. 1.1. It is the goal of this analysis to develop an operational pro-
cedure for efficient estimation of these error bounds for implimentation
in FPI.

In classical statistics, € is considered to be chosen by nature and is

a real number whose value remains forever unknown. The estimators 6 are



Fy(y)

1.0

Error Bounds

on FY - /

/ Best Estimate of FY

/N\—Fly, 0)

Fig. 1.1 The distribution function of response variable Y as cdmputed
by NESSUS/FPI
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random variables and are used for point estimates of 6 and for contructing
confidence intervals Qn 6. But for ease of analysis of confideﬁce bounds,

it is often convenient to use a "Bayesian approach” in which 6 is considered
as a random variable réflecting the fact that its value is uncertain. Con-
tinuing this role reversal the estimators é are assumed to be constant,

and equal to the expected values of ©. The value of this approach lies in the
fact that if one can establish the distribution Sf é, then upper and lower
confidence bounds are just the appropriate percentage points.

As an example, let the mean y of a normal variate be a random variable
having a mean of ; and standard deviation of ;//:T. A direct computation of
the upper 95% and lower 5% points produces the 907 confidence interval on u.
While deviating from classical statistics, this approach has experienced

increased popularity in recent years.

/N
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1.2 Statement of the Problem

Consider again the cdf of Y as shown in Fig. 1.2. 1If é were the actual
values of O which nature has chosen, then we have perfect knowledge of the

inherent variability of Y. FY would define precisely the distribution

of Y. But if © is a random variable, then for a given I-‘Y

be uncertainty in the value of Y which produces F'., Thus, Y will be a random

, say,F%, there will

variable.

It is important to note that what is really wanted is not the uncertainty
of Y given F,, but rather that of FY for a given Y, say y'. Thus, the generai
goal of this analysis will be to develop a practical algorithm for computing

the error (or confidence) bounds on F, for a given Y = y',

Y

1.3 Response Variable as a Function of the Parameters

To define the distribution of Y it is necessary to have an explicit
expression for Y in terms of X. This functio? is constructed from the data

base (Eq. 1.2) as a polynomial.

K K
2
Y=f(X)=a +) a, X, + ) b, Xi+ J c, X X (1.10)
°© im1 171 =1 i1 1,3 17174
1#3
Now consider the distribution of Xi, defined by the cdf, Fi(x; 01)
* .
and shown in Fig. 1l.3. Let Xi be the design point value corresponding to

*
y . FPI computes a design point ¥ when computing FY(y'), and in fact, must

satisfy,

y' = f(x*) (1.11)
N

*
i

terms of Oi by inverting the cdf

: * *
The cdf corresponding to X, is denoted as Fi' At F Xi can be written in

i‘

-1

* :
{ (Fi) (1.12)

Xi(Oi) = F



D-6

Fy(y)

1.0 - - -

Fy(y, ©)

Distribution of Y given F'
(denoted as Yo) resulting
from uncertainty in ©

Fig. 1.2 Distribution of Y for a given F'
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Fi(Xs 0,)

1.0 - - =
PDF of f gest Estimate
given F, Fi(x; ;i’ 51)

Fig. 1.3. The cdf of X, and the pdf of X, given F; resulting from

uncertainty in ei



Upon substitution of each X, into Eq. 1.10, Y can now be expressed in

i

terms of
Y = g(©) (1.13)

1.4 Distribution of the Response Variable at a Given‘FY

Because © is a random variable, Y is a random variable. And because
the uncertaincty of each Xi was derived at l-‘: @nd X:), it follows that Eq. 1.10
defines the distribution of Y at F'. Let Yo denote the random variable,
Y at F'. The mean of Y° should be "close to" y'.

Let the cdf and pdf of Y° be denoted as Fo and f° respectively; and let

the mean and standard deviation of Yo be uo and oo.

H,(0) = E(Y) = E[g(0)] = y' (1.14)

o2(0) = V(¥) = vig(e)] (1.15)

1.5 Confidence Bounds on Yo

Let a denote the confidence level, and let YL and Yu denote the upper
and lower confidence bounds. These terms are related by the probability

expression,

1A

<
P[yL Y, - yU] =q

And it follows that,

l ~a

. 4! .'
Fo(yps ¥v's €)= =

A

P[Y

(o} yL]

l+a
2

PIY_ -y,

. y! ‘-



The upper and lower bounds are

-1(1l-a
L Fo (' 2 )

-l1{1+a
Yu Fo ( 2 )

and Yy define points on the confidence boundard as shown in Fig. 1.4.

L
Translating horizontal confidence bound to a vertical bound statement,

= '
P[Y, > yy] = P[F < F lyU].

Thus, one point on the lower confidence bound of F_, at Yy is obtained.

Y
Similarly,

= \
PIY <y/] =P[F>F|y]

And a point on the upper confidence bound of FY at YL is defined.

In general, then the confidence boundaries would have to be constructed
on a point by point basis using several values of y'.

A simpler scheme forsestimating the error bounds for FY at y' using

calculations at y' only will be presented in the next chapter.
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1.0 - -—
Error -

Boundaries

PLYy <y 1 =PlFy > F'ly L

1 -«

A
-n
<
(e
[V}

Fig. 1.4 Error bounds on Yo and corresponding error bounds on FY
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2.0 EXAMPLE: "FIRST ORDER" ERROR BOUNDS

2.1 Preliminary Remarks

The problem of constructing error bounds on the cdf of response variable
Y, as described in Sec. 1.0, may be too general to be practical. An example
provided in this section illustrates how an approximation to the error bounds
can be constructed using an algorithm which is simple enough to be included
without great difficulty (we hope)-in a probabilistic structural code.’

2.2 The Response Variable, Y

Assume that Y is linear in X in the neéighborhood of y'.

K
Y=a + § a X (2.1)
° a1 i1

14

The goal of the analysis is to construct the error bounds on FY at y .

Assume that Xi is normal. The cdf of Xi is written as follows noting that

Oi = (”i’ ci) is a random vector.

X = u

Fo(xi vy, 01)-¢< o i) (2.2)

The best estimate of the cdf of Xi is,

* X - ui |
Fi(x; Mys oi) = ¢<l - j) (2.3)
9

Because Y is a linear function of normal Xi, the estimated distribution

Y in the neighborhood of y' will be normal using the parameter estimates,
y = Hy
FY(y) = = (2.4)

Oy
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where X
Uy =8, + 121 a  u, ' (2.5)

K
~2 2 -2
o, = ) a‘o (2.6)
YO 11

2.3 Properties of Y and X, at the Design Point

i

* ~
A basic property of the design point values X used to compute F,at y'

Y
*
y' = £(X)
N
lf *
y'=a + a, X (2.7)
° el i1
* .
where Xi is the design point associated with variable Xi.
’ *
The cdf at X, is,
i 7 x -
* X - My
F, = §§{ —— (2.8)
1 o
i

*

Shown in Fig. 2.1 is the cdf of Xi and the point X: and Fi'

*
At Fi’ Xi can be considered as a random variable denoted as xoi’ because it

is a function of 01 = (ui, ci).

. :
X (s 0 = F,7 (F)) (2.9)

-1 %
=0, § [Fi] +

i i

Upon substituting Eq. 2.8, it follows that,

*

- - 2.10
XogCugr 09) = 0p X -y (2.10)
\
where, * -
X -u
< -—1 (2.11)
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1.0

Fig. 2.1 The cdf of Xi showing the design point and corresponding F:

v
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Note that
*
E(xoi) = X (2.12)

because E(oi) = oi, and E(ui) ol PP

Also note that Xoi in Eq. 2.10 is 8 random variable because ci and Hy

are random variables. The pdf of xoi is shown in Fig. 2.1.

2.4 The Distribution of the Response Variable at a Given F

Y
Define F' as the value of FY corresponding to y'.
't
F' = ¢ ——% (2.13)
%
Define Y as,
o
K
Y =a_ +] a, X, (2.14)
i=]
K *
-a + ) a, (o, x + )
i=}
Note that‘from Eqs. 2.7 and 2.12,
E(YO) =y' (2.15)
Thus Yo is a random variable, denoting Y at F'. It is a function of O, and
it models or represents the error bound in Y at a given F'. The distribution
of Y is shown in Fig. 2.2.
The standard deviation of YO is
K 1/2
N 2 * 2
o, iél a; [(xi) V(o) + V(ui)] , (2.16)

And the coefficient of variation (COV) of Yo is

C =0 /u (2.17)
o o' "o
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F!

Fig. 2.2 The estimated distribution function for response variable Y
and upper and lower error o error bounds for Y
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1 will be normal and oi will have an x2 distribution.

In general, it would be difficult to derive the distribution of Yo' but as

1f xi is normal, then yu

indicated below, a "default"” lognormal model can be assumed. As a general
purpose distribution, the lognormal can be used as an approximating model
in a variety of applications in which the exact form cannot be found.

2.5 Upper and Lower Error Bounds on Yo

Option 1. The lognormal model for Yo. Assume that Yo has a lognormal
distribution. Upper and lower error bounds on YO, denoted as Yu and Yy and shown:
in Fig. 2.2, can be derived as follows: Let a be the confidence level. Then,

yL» for example, is related to a as,

{1 -a
P[Y < yL|F ] 5 (2.18)

And if Yo is lognormal, it follows that the lower error bound for Y is,

v = Qo exp(z, 6) | (2.19)

where
Y - y-/aé'Iféf" (2.29)
5 = /in(1 + ) (2.21)

2. = standard normal variate at a

probability level of (1 - a)/2

Similarly, the upper error bound for Yo is,
N .
Yy = Y, exp(zu6) (2.22)

where 2 is the standard normal variate at a probability level of (1 + a)/2.
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Option 2. The normal model for Yo. Unfortunately; the lognormal model
for Yo has a serious limitation. The lognormal distribution is defined
oniy for Y > 0. 1f the response variable has values at zero, or in the
"neighborhood" of zero, then the lognormal is not suitable. In general,
this may not be a problem, but it is not unreasonable to imagine interest
in some variable which has a zero mean. In any case, the problem can be
avoided by using a normal model for Y. The penalty may be a loss of accuracy.
The mean and standard deviation of Yo are equal to y' and % (Eq.” 2.16)

respectively. Then the upper and lower error bounds on Yo are,
- 1
Y = L % +vy (2.23)
= \J
Yy = %y % +y (2.24)

2.6 Translation of Error Bounds on Y to Error Bounds on FY

Assuming that ¥ = f(%) is linear in-the\neighborhood of y' and that all

Xi are normal, it follows that Y will also be normal. Error bounds on Y°

can then be easily transferred to F given y'. The scheme for doing this
is suggested in Fig. 2.3.
The standard normal variate z defines the estimated distribution of Y,
z = Ty
; (2.25)
Y

where,
FY(y) = ¢(2) (2.26)

At y' the error bounds are assumed to be parallel to F, as shown in Fig. 2.3,

Y
The slope of the line is

dz

dX

l»—a

(2.27)

Q>
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FY = (z) - 2z (Linear Scale)

Error Bounds on
FY at y'

Fig. 2.3 How Error Bounds on Y are Translated to Error Bounds on FY
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And it is seen from Fig. 2.3 that

Yy~ Y
FL = ¢z - ———— (2.28)
%
y' - YL
FU = olz' + ——= (2.29)
Oy
where -
y' -
2' - —— % (2.30)
Oy

2.7 Concluding Remarks

These first order error bounds were derived on the basis of distributional
assumptions. It 1s hypothesized that these bounds are robust in that they
provide a reasonable approximation to those bounds for the general case
where y = f(i) is not linear, and 5 is not normal. This has yet to be proven.

A numerical example is provided in the next chapter.
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3.0 EXAMPLE: A NUMERICAL EXAMPLE OF FIRST ORDER ERROR BOUNDS

Sctatement of the Probiem

Consider the response variable Y which is a function of R and T.

Y=R-T

There 1s uncertainty in the parameters of R and T. It is required to compute

90X error bounds for Fy, the distribution function of Y, at y' = 1 and y' =2,

Observations on R and T have been made.

For R

Thus the estimators are,

~ ~

0x= (Mg, op)

Solution

The statistics are,

For T

The calculations below follow the forms provided in the Summary

The variances of the parameters are,

V(ug) = sg/n = (2)%/20 = 0.20

V(op) = s2/2(n - 1) = (2)%/38 = 0.105
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and,

2
V(uT) = sT/n = 1/20 = 0.05
V(o) = s%/Z(n - 1) = 1/38'= 0.026

The design points at y' = 0 and y' = 1 are defined in Fig. 3.1. Thus, at

Y=y,
R¥ - p
* - R 6.8 - 10 . _ 356
R
T* -
k= T, 5.8 I 5w +0.8
%1

The random variable Y given F' is denoted as Yo. The mean of Y° is
u =y

and the standard deviation of Yo is,

o, = L0 V(o) + vaug) + (0% V(o) + v(u1t/?
= [(1.6)2 (1.05) + (.2) + (.18)% (.026) + .05)1/2

o = 0.73
Q

OPTION 1 (Lognormal model for Yo)
The COV of Yo is,

C 09 0.73
¥

C = = —— =

o
o b, Y 1

=0.73

and

§ = Vin(l + ci)

= Vin(l + .73%) = 0.654



o ' 2~N(10,2)

Y=R-T
T~N(S, 1)
REDUCED VARZIABLES ,L=IZ-:0 ,b='r-’-5

P =P(rey)= 7(’2;;.'730)
PerForuance FuMcTion 4=R-4-T
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‘ e
/
A
\PgslGM PoiINTS
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v / « o > »*
¥ g n R £ T
-] Z2.65 "2.4“ g,?r [, 2 6z
o 223 -Z.0 Lo ' s
+1 |76 -lLé b,g € 58
+2 3% -2 7.6 b =

g 3| Desian Points (opr€sPeNDING To 9



D-27

The median of YO

The estimated mean and standard deviation of Y,

~ LA

=g - Moy = 10 -5=5

My
GY O'R + O'T

= /2% = 1% = 2.24
For 90% error bounds, (1 - a)/2 = 0.05, and (1 +a)/2 = 0.95.

z; = - 1.64 zU = 4+ 1.64

The upper and lower error bounds for Yo,

N ,
v = Y, exp(zLé) = 0.80 exp (-1.64 x .654)

0.273

"
Yy = Yo exp(zUG) 0.80 exp (1.64 x .654)

= 2,33
The cdf of Y at y' =1 is,
F' = ¢(2")
—
where . y uY
°y
1 -5
773 -1.787

Then, F' = $(-1.787) = 0.037
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And finally the error bounds on FY at y' =],

Y, = ¥'
Fi = ¢<z' -U—A—)
(o}

[ ]
/-\
[
~J
(o]
~4
1

N
[ 5] [V ]
o
[ ]
&0

ot
N’

oo |
"
N
+

‘.—
¢< y y,_)
U _—
C

Y

- 0.273
o( 1.787 + 1= 0.273 e

0.072

These bounds are plctted in Fig. 3.2,
OPTION 2 (Normal model for Yo)

When the normal model (Option 2) for Yo is employed, the upper and lower

bounds are

(- 1.64)(0.73)+ 1. = - 0.20

(1.64)(0.73) + 1. = 2,20

Employing the forms as above for FL and FU’

FL = 0.10 FU = 0.105

The Option 2 bounds also plotted in Fig. 3.2 do not agree well with the

Option 1 bounds. Brief commentary on these differences is provided below.
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Now compute the error bounds at y' = 2, Only those calculations which
differ from above will be shown in the following.

The design'point (See Fig. 3.D
r* = - 1,2 t* = 0,6
o, " 0.649 (Eq. )

v .2 =5

z2' = 35 =~ 1.34

F' = 0.090
OPTION 1
C = 0.324

§ = 0.316

F. = 0.029
F_= 0.172
OPTION 1
y = (- 1.64().649) + 2. = 0.935
= (1.64)(.649) + 2. = 3,06
F, = 0.035
F. = 0.193

The error bounds are plotted on Fig. 3.2,
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Some Comments

The differences in the first order error bounds reflect concerns by this
author regarding the general use of the lognormal model for Yo. As y' *VO,
it is noted that C° + » and the model "blows up."

However, the lognormal may be a more accurate model for response vari-
ables which are guaranteed to have positive values. On the other hand,
the nomal Yo model avoids any mathematical difficulties in the neighbor-
hood of y' = 0. And because (a) the normal and lognormal error bounds
are "reasonably close" in the region where y' > 0 and (b) the normal model
is easier to use, it is suggested that the normal be used as a first order

approximation to the error bounds.
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1.0 INTRODUCTION

1.1 1Introductorv Remarks

Monte Carlo traditionally has been considered to be a "last resort”
method for solving a probability or statistics problem because of high
- cost relative to accuracy of the results. However, in recent times a
coﬁbination of the development of new efficient numerical techniques
and new digital computing hardware have made Monte Carlo more attractive.

Presented in this report are descriptions of the following Monte
Carlo programs dedicated to probabilistic structural analysis.

1. "Conventional" Monte Carlo

2. Variance reduction using antithetié variates

3. To be added later

4, To be added later

Provided in the following section; ate descriptions of how each method
works as well as a comprehensive study of the performance of each.

1.2 The Basic Problems

Consider the random variable Z as a function of the random vector

X=X, Sy 0 X))

Z = h(%) (1.1)
The distribution of each Xi is known. It is assumed that all Xi are
mutually independent.
One problem of probabilistic mechanics and design is to compute a

point probability,

p = P[h(X) - h ] (1.2)



For example, p could represent the probability of exceedance of a deflec-
tion or perhaps the probabilicy of failure.
The second problem is the extension of the first to the construction

of a cumulative distribution function.

F,(z) = P[h(Q) = z] (1.3)

Clearly the two problems are identical, but optimal strategies for analysis
may differ. For example, to construct the CDF, one option would be to
obtain point estimates of FZ at selected values of z, then fit a curve

through the points. A second option would be to construct an empirical

distribution function from a large sample of Zi (See Sec. 2.4).

1.3 Random Samples

The basis for Monte Carlo simulation is a standard uniform distribu-
tion random number genarator. Methods of generating uniform variates are
generally based on recursive calculations of residues of modulus m from a
linear transformation [ 1]. Most large computers have such a generator
as a librarv function.

A variety of methods can be employed to generate variates from the
distributions. Presented in Appendix A are algorithms used for the program

presented herein.
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2.0  ""CONVENTIONAL'" MONTE CARLO

2.1 Point Probability Estimates by Conventional Monte Carlo Using the

Bernoulli Parameter

Consider a function, h(%), where § is a vector of random variables,

all having known distributions. It is required to cdmpute,

<
P = P[R(Y) = h] | (2.1y

The problem can be reformulated as

P = Plg(X) = 0] (2.2)

where g(X), called the "performance function," is

g = h(Y) - b, (2.3)

In a direct Monte Carlo scheme, a sequence of K random vectors,

\
éi’ can be sampled, and in turn, a sequence of 8+ i =1, K computed. Define

Y =1 if g 20 L (2.4)

Thus, Yi has a Bernoulli distribution
P(Yi = 1) =p (2.5)

P(Yi =0)=1-p

where the Bernoulli paraméter p is the same p as in Eq. 2.1.

The maximum likelihood estimate (MLE) of p is [ 5],

K

. K
p = ) Y, (2.6)
i=]
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< -
But XYi is just the total number of g =~ 0, denoted as N . Thus, p is

just the fraction of the gi's less than zero

-

p= (2.7)

|-

A flow diagram of conventional Monte Carlo is given in Fig. 2.1.
A listing of a computer program for conventional Monte Carlo employing
the Bernoulli parameter is provided in Appendix B and an example of the

output is shown in Fig. 2.2,

2.2 Confidence Intervals on the Bernoulli Parameter, p

-

The MLE of p is ﬁ. Because of sampling error, p is only an estimate,
and the key question is how close is p to ;. Confidence intervals are
described below. Note that these confidence intervals refer to
sampling error of the Monte Carlo process, not uncertainties associated,
with the parameters of Xi.

Consider 6,

=i 12( Y, (2.8)
K y=1 1
The mean and variance of ﬁ are [ 5]
E(p) = P | (2.9)
v(p) = EL=P) (2.10)

By the central limit theorem, p will approach a nommal distribution as
K - =, Confidence intervals for p are constructed using normal distribution

mathematics,
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B |

Define:

(a) g(X)
' (b) Distribution, and

(1)

(u, o) for all X,

{

Y

Obtain random sample

Ki = (Xl’ XZ’ . .. Xn) }
1
(3) Compute g(Xi) '

{

Repeat (2) and (3) to obtain
(4) sample of g({i); i=1, K .

(2)

POINT PROBABILITY CONSTRUCT CDF
ESTIMATE Sort g(x) to define
Count frastion , ‘r - empirical CDF l
of g({i) -0 | ,
Plot :;;f-
-

Fig. 2.1 Flow diagram of conventional Monte Carlo
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MONTZ CAKLO SOLUTION
LIMIT STATE FUNCTION : R=S

SAMPLE SIZE, K= 100

NUMBER OF RANDOM VARIABLES, N= 2

RANDOM VARIABLES

VARIAELE DISTRIBUTION MEAN STD DEV
R WEIBULL . 20020E+02 . 2@020E+21
S EVD . 10000E +@2 . 20080E+D1

STATISTICS OF Y 4 <3—————— Note that Y is the same as g(X);
these are the statistics on the
MEAN = - 12218BE+@2 limit state function.

. 27499E+Q1

STD DEV

MEDIAN = .96&40&E+21

cov = « 27458E+30
r———— This is p
NUMBER OF NEG Y VALUES= . PERCENT OF TRIALS= .2832020¢

Fig. 2.2 Output of conventional Monte Carlo program. (No sorting requested)

Performance function; g(R,S) = R - §



/pQ-p) << p(1 - p)
P =2 v K LA Za/2 K (2.11)

~

where p is substituted for p in the variance. The probability that p will
be bounded bv the lower and uppper limit is l-a, where a is the confidence
coefficient. 2072 is the standard normal variate corresponding to «/2.

Commonly used values

¢ 2a/2
.10 1.64
.05 1.96
.01 2.58

The confidence interval of Eq.2.11 relies on the central limit theorem
and must be considered as only an approximation for finite K. 1In general,
the approximation is considered "valid" if Kp > 5 [ 5].

Eq. 2.11 can be written as, .-

P-v)Spip+y (2.12)
wvhere,
, - -
y = 212 //"(l - P) (2.13)
= K

Eq. 2.13 is displayed in Figs. 2.3 and 2.4 for 90% and 95% confidence
intervals respectively. These figures show the sample size requirements
for confidence intervals of a given width and level. For example, if the
point probability is expected to be about 10-3, and it 1s required to have
p within : 10% of p with a confidence of 90%, then it is necessary to have

a sample of size K » 200,000.
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2.3 Computer CPU Timg on the CYBER 175

The conventional Monte Carlo program of Appendix B was exercised on

- several problems using all five of the available distributions. CPU time

was recorded for each program. It is assumed that chis conventional Monte
Carlo program will provide an upper bound to CPU time relative to other,

and more efficient, Monte Carlo schemes. The CYBER 175 is the mainframe
computer at the University of Arizona, and all results relate to this machine.

Recorded CPU time for several examples was consistent. Compilation and
loading time for all cases are shown in Table 2.1. These are average values,
hut there was little variation.

Execution CPU time essentially depends ;nly upon the number of variables
and not on distributional forms or performance functions. Fig. 2.5 illustrates
the CPU execution time per variate as a function of sample size K. Total CPU
time is obtained by adding compilation and loading time to execution time.

A sample program was run on both the CYBER 175 and the VAX 11/780 for
a time comparison. The results shown in Table 2.2, reaffirm the fact that
the VAX is too slow for production Monte Carlo.

To get an idea of computer charges for running Monte Carlo, Fig. 2.6
is provided. This is the commercial rate of the UA CYBER 175 for low priority

jobs.
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Table 2.1

Compilation and Loading CPU Time for Conventional

Monte Carlo on CYBER 175 Program

CPU Time (sec)

Compile 1.0
Load 0.25
Table 2.2

Comparison of CPU time Between CYBER 175 .and VAX 11/780

*
for one Example Problem

Time (sec)

CYBER 175 VAX 11/780
Compile 1.0 14
Link 0.25 5
Execution 7.5 30
TOTAL 8.75 49.0

x
There were 2 variables; K = 30,000,
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|10.0=T= CPU EXE CUTION
B IME PEK UVARIABLE

o

(SEC)

|.Of—

4" -
T(SEC) = (1.4 x 10"%)K

01 /

1 i 1 A 1 1 i 1 -
1
10 10 1o* 10

SAMPLE SIZE , K

Fig. 2.5 CPU execution time per variate on CYBER 175 as a

function of sample size K.
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1
COST. D

D= 9.036 -ré

50 tTo SECDNDS,T}
L1 { L] i I { | i |
1.0 20 MINUTES

Fig. 2.6 Cost in dollars ($), D, as a funceion of time for

the UA CYBER 175; lowest priority.
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2.4 Comparison of Monte Carlo to Wu/FPI

Computational ef?iciency was the motivation for the development of the
Wu/FPI program. It is generally known that Monte Carlo is inefficient
relative to a fast probability integration method. An attempt is made here
to quantify differences in computer time between conventional Monte Carlo
and Wu/FPI. Because the cost of conventional Monte Carlo depends upon the
acéuracy and probability level required, a general direct comparison can't
be made. However, an example presented in the following clearly demonstrates
the high cost of Monte Carlo. v

Suppose that it is required to provide a Monte Carlo solution such
that the 90% CI for p is within ¥ 10% of 5. 'The CPU execution time for the
CYBER 175 can be computed from Figs. 2.3 and 2.5 for a given probability
level, ;. This CPU time is shown in Fig. 2.7 as a function of the number
of variables in g(%) for ; = 10.3 and 10-4. At these levels Monte Carlo is
two to three orders of magnitude more expensive thanvFPI. And the FPI
sclution is likely to be more accurate. Moreover, for smaller tail proba-

bilicties FPI gets no more expensive while Monte Carlo will break the bank.

2.5 Estimating the CDF of a Random Function

2.5.1 The Empirical CDF
Conventional Monte Carlo provides capability for estimating the complete
distribution function of a function of random variables. Define the random

variable Z, as a function of the random vector %.

Z= Z(é) (2.14)
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 CPU EXECUTION
TIME (SECOND)

\PROBABILITY LEVEL = 0™ _

CONVENTIONAL ¥=0.10
MONTE CARLO CI=907% -

- \-PROBABILITY LEVEL= | O

0 0 20 30
NUMBER OF VARIABLES

Fig. 2.7 Comparison of Monte Carlo and Wu/FPI CPU time

15



E-16

A random samplevof Xi; i=1, K is used to geﬁerate a random sample of
Zi; i=1, K.' In turn, aﬂ empirical distribution function of Z can be
constructed using methods of probability plotting. The empirical CDF,
denoted as Fi, will be an estimate of the CDF of Z, fz(z).

Various forms of Fi have been proposed [ 3, 4, 6]. The values of

Fi below correspond to Z(i) where Z(i) is the ith smallest value of the

random vector %. Thus, Fi = Fi(z(i))'
1 -1/2
1. Hazen; Fi X
2 Gumbel; F,6 = 1 !
- bUmReL Ny TR+ 1
i-0.3
3. Median ranks, l-‘i n+ 0.4

Through prior experience on extensive Monte Carlo simulation, this author
has found that the Hazen formula consistently provides 'good estimates”

of Fz.

2.5.2 The Sort Routine

To éonstruct the empirical CDF it is required to sort the random
sample £ to obtain an ordered sample %o' Let Z(i) denote the ith smallest
value.

The routine used in this Monte Carlo code is program QUICKSORT which
is considered to be the fastest available [ 7]. A description of QUICKSORT is
given in Appendix C. The Fortran statements for this code are provided
intthe program listing in Appendix B .

CPU time requirements for the sort routine can be relatively large for
large samples. Fig. 2.8 shown CPU execution times as a function of the

size of the % vector.
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CPU SORT TI-HF,'SEC

{000

III

0.1

Tom 10? 1o 0%
SAMpPLE <IZE, K

Fig. 2.8 CPU sort time (execution)as a function of sample

size for the CYBER 175.
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2.5.3 An Example.

Shown in Fig. 2.9 is a table of the sorted vector Z(i) and the corres-
ponding Fy for the example of Fig., 2.1. This is the data required for
plotting. The empirical_CDF of Fig. 2.10 was done by hand, but in general

such graphs can be automated using a computer graphic§ package.
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I =

I = &
l = 11
I = 16
I = 21
I = 26
l = 31
I = 36
1 = 4]
I = 44
I = S1
1 = Sé
I = 61
I = -Y-)
I = 71
1 = 76
1 = 81
I = 86
l = {1
I = 96
1.= 1
I = é
1 = 11
I = 16
1 = 21
I = 26
I = 31
I = 36
1 = 41
I = 445
I = St
1 = Sé
1l = 61
I = Y]
I = 71
I = 76
I = 81
I = 86
I = 91
1 = 96

Fig. 2.9 Sorted Zi and corresponding empirical CDF for the example of Fig.
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SORTED VALUES OF Z AND THE EMFIRICAL CDF

«32159E+01
.484Z7E+01
« S9944E+01
«69827€+01
«76156E+01
.873B4E+01
. 705619E+21
. 92816E+01
« 75862E+01
« 10854E+022
« 1@376E+82
«18712E+02
. 10856E+02
+11191E+02
. 1173BE+22
. 12122E+02
. 12667E+22
. 12893E+02
« 13273E+02
. 13943E+82

. SO000E-22
. 55000E-01
. 10500 +00
» 15500E+020
. 20500E+20
+ 2550RE+00
. 3850QE+00
« 35500E+20
. 42S22E+020
. 45500E+00
. S@522E+2Q
. SS500E+D2
. 60580E +DQ
. 65500E+2Q
. 70520E+002

« 755S00E+20

. 8@522E+020
. BS5Q0E+00
« 705Q00E+00Q
. 75500E+00

. 40B876E+01
.48984E+0Q1
. 60426E+01
. 70597E+0!
« 7965S3E+01
.87709E+01
. 9097 1E+01
. 92823E+01
. 95993E+01
- 10115E+02
.10581E+2
. 10771E+02
«10874E+02
« 112446E+02
. 11760E+02
. 12140E+0@2
- 128@3E+02
« 12963E+02
. 13297E+02
. 14797E+022

- 15S02CE-01
. 65000E-01!
. 11500E+001
. 1650RE+22
.21500E+20
. 2650DE+Q2
- 315QQE+20
. 34SRRE+Q0

.415Q0E+20

. 46500E+00
- S5150RE+22
« S4&500E+Q0
. 651500E+00
. &65RRE+00
. 71SRRE+20
« 765@RE+00
.81500E+00
.B45QRE+QQ
. 71500E+020
. 96582E+22

.42831E+01
. S@5B6E+21
. 66202E+01
. 70485E+021
.B3B61E+01
.87964E+01
.91454E+01
. 93259E+@1
. 96380E+@1
. 10137E+@2
. 10607E+02
. 10773E+02
. 189SBE+@2
. 11344E+022
.118Q2E+@2
. 12284E+02
. 12B44E+@2
. 13042E+@2
. 13361E+@2
. 14983E+02

. 2S020E-21
. 7SQURE-01!
. 12500E+02
. 17500E+Q0Q
. 22500E+00
. 275082E+00
. 32500E+@0
» 37SQGE+BO
. 42500E+00
. 47500E+00
« 52500E+02
« 97500E+00
. 625S00E+22
. &7500E +20
. 72500E+20
. 775S0QE+Q0
. 82500E+020
.B8750CE+20
« 72500E+00
. 97500E+00

. 44764E+01
- 56150E+01
. 685SORE+Q1
«70780E+01
.84534E+01
.B888SRE+Q}
. 92372E+01
.95770E+01
.98157E+01
- 10256E+02
«10631E+@2
«10791E+82
«11125E+02
. 11409E+02
- 11912E+02
. 12413E+02
. 126867E+02
«13121E+02
. 1363BE+Q2
«15123E+02

. 35000E-01
.85000E-01
. 13500E+0Q
. 1B5QRE +00Q
- 2350RE+00
. 28500E+00
- 33SQOE+00
. 38SORE+Q0
.43500E+0Q
. 4850QE+00
. SI500E+02
. S85Q0E+Q20
. 63500E +00
. 68500E+020
. 73SQRE+Q0Q
. 78S@22E+Q20
.83S0CE+20
. 885S2BE+20
« 93502E+00
. 98520E+00

. 45626E+21
.59102E+01
.6921RE+@1
. 71004E+01
.84720E+@1
.B9137E+01
.92557E+01
. 95829E+01
.98782E+01
. 10370E+@2
. 1D644E+02
. 1884 6E+02
. 11162E+@2
. 11616E+02
. 11933E+@2
. 12573E+@2
. 12873E#02
. 13142E+02
. 13709E+02
. 1S3@SE+22

.45020E-21
. 950002E-81
. 14500E+0Q0
. 19500E+00
« 24500E+00
. 295Q0E+020
. S4CS020E+R2
- SYSQRE+00
+44500E+00Q
. 495DOE+00
. S54520E+020
. S9500E+00
«64500E+00Q
. 69500E+00
. 74500E+20
. 79500E~00
.B4502RE+20
. B89522E+00
. 74500E +002
« 99500E+2C

.1
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3.0 THE VARIANCE REDUCTION METHOD

3.1 Preliminary Remarks

The variance of Monte Carlo estimators can be reduced, relative to
straightforward sampling of Chapt. 2.0, by appropriate operations with
negatively correlated samples. Ang and Tang [ 1] present several examples
which demonstrate dramatic improvements in efficiency realized by variance
reduction methods.

A variance reduction computer program, tailored for structural
mechanics analvsis by providing point probability estimates of functions of
random variables has been developed. The listing is given in Appendix D.-
To asséss performance, the program has been exercised on several examples.
Results presented in Section 3.6 show dramatic improvement of variance
reduction over conventional Monte Carlo in some cases. In other cases,
the improvement is only modest. Some genera;'conclusions are presented
in Section 3.7. For the most part however, for a given problem it is dif-
ficult to predict how much improvement one can expect with variance réduc-

tion.

3.2 The Essence of Variance Reduction

The goal of analysis is to estimate

p = P[h(X) <h ] | (3.1)

Suppose p and p' are two unbiased estimates of p. (The method for obtaining
a point estimate of p is described in Sec. 3.4 below.) The two estimators

may be combined to form another estimator

B =i+ ") (3.2)
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The expected value of Pg is,
- 1 - -

E(p) = J[(E(p) + E(p")] = p (3.3)

which means that E is an unbiased estimator.
The corresponding variance is
. _ L ) ) o ‘

V(p) = Z[V(p) + V(p') + 2 Cov (p, p")] (3.4)
If p and p' are statistically independent, for example, based on two separate
and independent sets of random numbers,

V(E) =3 VR + V(RN (3.6)
Thus, the accuracy of the estimator p can be improved over that of the
independent case 1f p and p are negativelx correlated. Ang and Tang cite
several examples (no structural analysis) where variance reduction can

provide a dramatic improvement in efficiency of probability estimation [1].

An estimate of p is obtained by several samples, Si; i=1,K.
K
|
-z Z (3.7)

all 51 are independent. Note that Pg will approach normality as K + =
as a consequence of the central limit theorem.

The mean and variance of pPp are,

E(pE) =p (3.8)

Vipy) = oi/K (3.9)

where oi is estimated as,

s = -f— Iy - Ps)2 (3.10)
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3.3 How to Obtain Negatively Correlated Samples

Suppose that the uniformly distributed variate uy is used to generate

a number Xy from a given distribution (See Appendix A). Then the uniform

variate u' = 1 - u, will produce an xi such that x, and xi will be negatively

i i
correlated. The ui are called "antithetic" variates.
And in general, if ul, uz, SCEEN is used to generate 5, and 1 - ul,
1l - Ups o o e 1l - U is used to generate ﬁ', then ﬁ and p' will be nega-

tively correlated.

Such a procedure works well when the integral transform 1s used, e.g.,

Weibull, EVD. One uniform variate uy is used to generate one x

where Box-Muller is used to generate normal variates, two u

T Bgt
{ are chosen

(See Appendix A). While the resulting X and xi will be negatively correlated,
the correlation coefficient will not be -1.0. An improvement can be made

by choosing xi as a "mirror image' of X4 in the distributions. This can

be done by
x!' = 2u - x ‘ (3.11)

where u is the mean of X,

3.4 How to Obtain Point Probability Estimates

3.4.1 The Two Variable Case
The structural reliability problem in which p is the probability of

failure will be used to illustrate how p and p' are obtained. Consider
the design case where the two variables are R (strength) and S (stress).

Estimate p, where

p=P[R-5 0] (3.12)
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Both R and S are random variables whose density functions are shown
in Fig; 3.1. First S, having been identified as the variable having the
largest variance, is the "reference."” A random variate R1 is sampled from
the other factor, R. An estimaté'of p is

pi = P(S > Ri)
=1 - FS(Ri) (3.13)

where Fs is the CDF of S.

It should now be apparent why sampling is done on the smallest vari-
ance term.- p is a "good" estimate of P if the distribution is narrow, and
is exact as o, + 0.

R
Now the antithetic variate R

{ is sampled as described above. Because

it is negatively correlated to R, , its position relative to R1 will be as

i’
shown in Fig. 3.2. Then,

py = B(S > R})
=] - FS(R;_) (3'.14)

and the ith estimate of p is

- 1 .- 4
p, =7 (B, + 9D (3.15)

As a second example, consider again the case where R and S are the basic

R S
variable. Random points S, and the antithetic variate S

variables, but now where o_ < ¢_. In this case, R would be the reference

i are sampled from

S. The estimates now are,

P, = FR(Si) -(3.16)

~y .
Py FR(Si)
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The "Reference" Variable.
PDF of S, fs (maximum

variance variable)

|

&

Fig. 3.1 Estimate of p using one point sampled from the minimum

variance variable,
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PDR of R, fR

PDF of S, fs
|

z/i;%;;;Q;;/;,]3§§chwa:\

L
Ry Ry

A" o= A = v
Py P(s > Ri) Py P(S > Ri)

Fig. 3.2 Estimates of p using a point R, sampled from R and the

i

antithetic variate of Ri’ denoted as Ri
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Thus, it is seen that the variable type (stress or strength) must be identi-
fied to obtain the proper form for computing estimates.

Fig. 3.2 shows why negatively correlated variables tend to provide
good estimates. Being on both sides of a distribution, R, and R! combine to

i i
produce an "average' estimate of p.

3.4,2 The General Case

In general, thé performance function, g(%) = h(%) - h° is a non-linear
function of several variables. The method of obtaining a point estimate of
p is an extension of the scheme for two variables.

The reference variable is defined, not as the one ﬁaving the maximum

variance, but rather the one having the maximum impact. For example, if
g =5R-S8 (3.17)

and o_ = 05/2, clearly the random variabfe,\R

R = S5R will have a larger vari-

1
ance than S. Thus, we say that R is the maximum impact variable.
In general, the maximum impact variable can be found by estimating

3g/3X, for each Xi. The maximum impact variable, denoted as Xq, is that

i

X, for which lag/axil is the largest.
The sign of Bg/BXi identifies variable type; stress if (+) and strength
if (-). As indicated above, the "type" of X“ must be known to choose the

appropriate form for estimating p (e.g., Egs. 3.13 and 3.16).

The estimates p and p' proceed as follows. Sample all variables but
XM'- Let g({) = (0, and solve for Xy (this is done by the secant method

in the program).

Xy = h(*o) (3.18)

where X is the vector of sampled K minus XM.
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The estimate of p is,

P = FXM(xM) if XM is a strength-vatiable (3.19)

1 -F (xM) if XM is a stress variable

X

To obtain p', the antithetic vector Xo of %o is used in Eq. 3.19.

3.5 Confidence Intervals on p

Noting that Pg is normally distributed, approximate 1 -a confidence inter-

vals on p can be constructed as [ 5],

z s z s
pp - =2 P cpcp 421 (3.20)
7K YK
or,
Pe(l-Y) < p < pg(l +v) (3.21)
wvhere,
z;‘/2 = standard normal variate (absolute value) at
probability level a/2.
z c '
-a/2 7P (3.22)
v K
Cp = sp/pE (3.23)

_ The UA variance reduction program chooses K to produce a specific
confidence interval. For example, if you want to sample until the 95%

+
confidence intervals are - 10X of Pg>

- = 3.24)
y = 0.10 2,9 = 1-64 (
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and solving Eq. 3.22 for K,
' 2
z C
...°‘_/_2._P__ = 269 Cz (3'25)

K > p

To find Cp, an initial sample of K = 1000 is chosen and an estimate
of Cp {s obtained. Then if K < 1000 in Eq. 3.16, the process is terminated
with narrower confidence intervals than requested. If K > 1000, the program

will continue to sample to that value.

3.6 The Variance Reduction Monte Carlo Program

A flow diagram which outlines the logic_of the variance reduction
program is provided in Fig. 3.3, Sample output of the program is shown
in Fig. 3.4 with some commentary.

Two versions of the program have been developed. An interactive version
(IVARED) runs on the IBM PC/XT. Program VARED runs on the VAX or CYBER 175.

A listing of VARED is given in Appendix D.

3.7 Examples of the Performance of VARED

Twelve éxamples of the use of VARED to produce point probability estimate
are provided in Tables 3.1 through 3.12. Point estimates by VARED are compared
to the exact solution (closed form or POFAiL) if available. The exact
solution, provided by program POFAIL, is employed for performance functions
involving two variables. For larger problems, Wu/FPI is used. For the
VARED solutions, 95% confidence intervals (a = 5%) are specified along
witﬁ y = 0.10.

To compare variance reduction with conventional Monte Carlo, sample
size requirements and CPU time for the latter are extracted from Figs. 2.4 and

2.5 and are presented in the tables.
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L

(2)

(3)

%)

(5)

(6)

o

(8

(9

Fig. 3.3

Define
(a) 80

(b) Distribution, and (u, ¢) for all xi
(¢) 1 - a; confidence level

(d) v; width of confidence bound

(e) K, the initial sample size

y

Identify maximum impact variable, xH

Y

Sample a random vector 51
(all variables except XM)

— Y

Compute pi

————

Y

Obtain cthe antichetic vector El

-1

Compuce p{ ‘

— ¥

~
Compure p, ‘

b

Repeat steps (3) through (7); { = l,K‘I

I

4

YES

Compute 1:)E and 1l -a confidence bounds.

Are confidence bounds witch pE(l : v)?

NO

f

Print Results ’

|

(10)

;

Compute Ko' the addicional samples

K vequired to bring 1 - a confidence

bounds within pE(l -v)

Y

(99))]

Repeat steps (2) chrough (7) for { = 1, Ko

{

(12)

Synthesize dats collected in (8) and
(11) and print resulgs

An outline of the variance reduction Monte Carlo program
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Fig. 3.4 An example of the output of the variance reduction Monte Carlo

Program with commentary

MONTE CARLO SOLUTION

LIMIT STATE FUNCTION : G=R-DSQRT(ZQ0.#P##2+1,92%#T#x2)

This valueiisrirbifrary;
ic is the size of the
SAMFLE SIZE = 1000 first sample used to
estimate the total’

NUMBER OF RANDOM VARIABLES = 2
required sample size, K

CONFIDENCE INTERVAL = 95.00 % Ensures that 95% confidence intervals

GAMMA = .10 on p will be within ¥ 10% of the

esti@ator, pE

MAX. IMPACT VARIABLE = X( 1)

VARIABLE TYFE IS STRENGTH

RANDOM VARIABLES

VARIAEBLE DISTRIBUTION MEAN STD DEV

R WEIBULL . 480B02E+0@2 . J0000E+21

P LOG . 76870QE+Q0D . 16000E+@0

T EVD . 20000E+22 . 20000E+Q1
ESTIMATE OF P = . 1604ZE-02 This is the first estimate of p

?5.02 % CONFIDENCE INTERVALS ARE

FPL = . 11725E~-02 PU = . 20260E-22 l Note that 957 confidence
intervals exceed = 10%.
l Thus, a larger K is
J required. (See below)

STATISTICS OF P

MEAN = » 16043E-02
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STD DEV = « 696462E-02

MEDIAN = « 36@Q4E-0Z

cov = . 43422E+01

Based on the first sample of K = 10(
this is the total K required for thi
desired confidence intervals. K is
computed from Eq. 3.25 which require
K FOR GAMMA = .10 IS 7244 Cp. This is why the first sample o!
1000 is taken.

ESTIMATE OF P = . 18020E-02
95.@@ % CONFIDENCE INTERVALS ARE

PL = . 15509E-02 PU = « 20550E-B2

Note that the confidence intervals do not quit
meet the specifications. This is because the
original estimate of Cp = 4.34 was small relat

to the improved estimate of Cp = 6,24

STATISTICS OF P 3

MEAN = ' ,1B3I4BE-02
STD DEV = .114S4E-B1
MEDIAN = .29017E-03

cov .524346E+01

DO YOU HAVE ANOTHER DATA SET ?(Y/N)

Note: The size of the sample required K depends upon Cp (Eq. 3.25).
In this problem Cp is relatively large implying that a relatively

large K is required. This same problem is presented in Table 3.7.
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Table 3.1 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 1 '

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 1

PERFORMANCE FUNCTION: %: R- 5

* *
Variable Type Mean/Median Std. Dev./ COV

R N 50. | -5
s |~ | 20 12

RESULTS:
Probability Total Sample |
of Failure | CPUrTime(b) Size, k(¢
Exact(a) oS -~ -
Wu/FPI .05 E-2| _~ _—

Monte Carlo

Variance |_||8 FE-2 2.0& : leo

Reduction(d)
Monte Carlo

Conventional
(Be‘l:"noullr:ta | l . Z 5 Eq’

parameter) e) |~

Notes:
(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(¢) The number of ;1 for variance reduction and the number of Z1 for
conventional. The values are not directly comparable.

(d) 957% confiéence intervals within %107 of PE

(e) Same confidence interval as variance reduction.
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Table 3.2 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 2

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 9

PERFORMANCE FUNCTION: 8= R- S

Variable Type Mgan/uedian* Std. Dev./ COV*
R LN 850, “0.2 ¥
S LN 20. 0.2 *
RESULTS:
Probabilicy Total Sample
of Failure CPU-Time(b) Size, k()
(a) T
Exact —
Wu/FPI BAYTE -4 S
/
Monte Carlo
Variance
Variance ) 5.0T2E-4 13.78 11589
Monte Carlo
Conventicnal
(Bernoulli 23B.9 1,122 E 6

gg;ameter)(e

Exact value using POFAIL if two variables.

If more than two,

Wu/FPI is used: the exact should be within 5% of this value.

The number of ;i for variance reduction and the number of 2, for

conventional. The values are not directly comparable.

Notes:

(a)

(b} CYBER 175
(c)

(d)

(e)

957% confidence intervals within ¥ 107 of Pg

Same confidence interval as variance reduction.
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Table 3.3 Example of the Performance of a Variance Reduction Monte Carilo
Program; EXAMPLE 3

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 2

PERFORMANCE FUNCTION: ?: R-¢

'y
Variable Type Mean/Median Std. Dev./ COV*
K WEI. 4.5 0. 45
S FRE. 3.0 0.30
RESULTS:
. Probabilicy Total Sample
of Failure CPU-Time () size, k(¢)
(a)
Exact
Wu/FPI 1.0922 E-2
Monte Carlo . -
Variance oL £ - . >5 2
Reduction(d) ’1 Lf e 2 g Obb ’7
Monte Carlo
Conventional
(Bernoulli 4. b74 254 |

parameter)(e)

Exact value using POFAIL if two variables.

If more than two,

Wu/FPI is used: the exact should be within 52 of this value.

The number of Bi for variance reduction and the number of Z, for

conventional. The values are not directly comparable.

Hotes:

(a)

(b)_ CYBER 175
(c)

(d)

(e)

95% confidence intervals wi;hin,f 10% of PE

Same confidence interval as variance reduction.
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Table 3.4 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 4

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE Wf#'

PERFORMANCE FUNCTION: Q= g,g’

Variable Type Mean/Median" Std. Dev./ COV
R Wei 3 0. N V)
S Fre. 3. 0. b
RESULTS:
Probability Total Sample
of Failure CPU-Time(b) size, k(¢)
(a) _
Exact ) -
Wu/FPI $372 E-2 | -~ >
Monte Carlo
Variance -
Reduction(d) 4.o511 E-2 3568 [86(4’
Monte Carlo
Conventional )
(Bernoulli %\égﬁ ﬁLPLP |

parameter)(e)

Exact value using POFAIL if two variables.

I1f more than two,

Wu/FPI 1s used; the exact should be within 5% of this value.

The number of Bi for variance reduction and the number of zZ, for

conventional. The values are not directly comparable.

Notes:

(a)

(b) CYBER 175
(c)

(d)

(e)

95% confidence intervals within ¥ 107 of PE

Same confidence interval as variance reduction.
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Table 3.5 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 5 ’

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM
EXAMPLE FS

PERFORMANCE FUNCTION: ¢ = R-§

Variable Type Mean/Median* Scd. Dev./ cov*
R VUQ«‘\ ZOI 2'0
S EVD | 0. 2.0
RESULTS:
Probabilicy Total Sample
of Failure CPU-Time(b) size, k(c)
o L
Exact - - N
Wu/FPI > BETSIE-2 .
Monte Carlo '
Variance > CtE. . I 7
Reduot ton (d) i 6!7JE > [088f (126,
Monte Carlo
Conventional
(Bernoulli ' 3@ l57 15 33 20D
parameter)(e)

Notes:
(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175
(c)' The number of 61 for variance reduction and the number of Zi for
conventional. The values are not directly comparable.

(d) 95% confidence intervals within ¥ 10X of Pg

(e) Same confidence interval as variance reduction.
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Table 3.6 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 6

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE 6
QA 4 A
PERFORMANCE FUNCTION: - — - = - b,
.ﬁ B2~ ' . 82027119 ©-2E8 .

Variable Type Mean/Median Std. Dev./ COV

A LN .0* 0-3%

A WEI 43E9 0.5*

B LN 0.9% 0.25%
RESULTS:

Probabilicy Total Sample
of Failure CPU-Time(b) Size, k(c)

(a)
.Exact
Wa/ FPT 1.901 E-3 ~ ><
Monte Carlo
Vari jny = . |
e | 1958E-3|  2.643 14317
Monte Carlo
c tional
(Bernoullt b8.3616 | 199526
parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables.

Wu/FPI is used: the exact should be within 5% of this value.

(b) CYBER 175

If more than two,

(¢) The number of 61 for vafié;ééi};dﬁction and the number of Z1 for
conventional. The values are not directly comparable.
(d) 95% confidence intervals within ¥ 10% of Pg

(e) Same confidence interval as variance reduction.
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Table 3.7 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 7

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE '7

PERFORMANCE FUNCTION: 9= R—J3c0. p* « 1.82-T>

Variable Type Mean/Median* Scd. Dev./ COV*
R Wei 48.0 3.0
‘ ¥ ¥
i LN 0-9817 0.16
T EVD 20.0 2.0
RESULTS:
Probabilicy Total Sample
of Failure CPU-Time(b) size, k()
(a) 7
s 0.0CI8 <
Monte Carlo 2 %L‘L
Variance ) X
Reduction(d) 0 OOI82 08 [6 '575 | 7
Monte Carlo
Conventional -~

(Bernoulli

parameter) (e)

T4 4186

211349

Notes:

(a) Exact value using POFAIL if two variables.

If more than two,

Wu/FPI is used; the exact should be within SX of this value.

(b) CYBER 175

(¢) The number of ;i for variance reduction and the number of zi for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ¥ 10% of Pg

(e) Same confidence interval as variance reduction.
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Table 3.8 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 8

DEMONSTRATING THE PERFORMANCE OF THE UA

EXAMPLE 8

VARIANCE REDUCTION MONTE CARLO PROGRAM

' . 9= 4 -10000. fop - frp
PERFORMANCE FUNCTION: 3 {G*(Y- acyTit AT :,7]
Variable Type ' Mean/Median Std. Dev./ coV

A LN. .o ™ p-3¥
fer N. 0.1 0-07
G LM, 0.222% 0. ¥
Y LN 1.0% 0.15%
Jay EVD. 0.0005 v.00008
H LN 1-613*% 0 4 ¥
RESULTS:
Probabilicy Total Sample
of Failure CPU:Time(b) size, k(¢)
(a) ~
E
e | 1002 E-2 >
Monte Carlo
Vari . R=22 /
Reduerion(@) | 1 EEIHE-3| 14.8 4ol
Monte Carlo
C ti 1
(Bernoalls. 30.7564 59810
parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c)' The number of 61 for variance reduction and the number of Z, for

' conventional. The values are not directly comparable.

(d) 95% confidence intervals within ¥ 10% of Pg

(e) Same confidence interval as variance reduction.
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Table 3.9 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 9a .

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

9a

EXAMPLE
PERFORMANCE FUNCTION: %= R-S
Variable Type Mean/Medilnt Std. Dev./ COVt
K LN 20.0° 0.2*
S LN | 0.0% 0.2%
RESULTS:
Probability Total Sample
of Failure CPU-Time(b) size, K(c)
(a) o . . -
e bbbw2 E-3 \ /><
Monte Carlo 7
acnce | bw159€-3| 405 28]
Monte Carlo
(Rernoulit £955 0

parameter)(e)

Notes:

(a) Exact value using POFAIL if two variables.

157724

If more than two,

Wu/FPI 1s used; the exact should be within 5% of this value.

(b)
(c)

CYBER 175

The number of 51 for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

(d)
(e)

95% confidence intervals within ¥ 10% of Pg

Same confidence interval as variance reduction.
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Table 3.10 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 9%

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE Q b

PERFORMANCE FUNCTION: 4=R-§

. - *
Variable Type Mean/Median Std. Dev./ cov*
R LN 22.5% 0.27*
¥ ¥
S LN I 0.0 0.2
RESULTS:
Probability Total ~ Sample
of Failure CPU-Time(b) Size, K(¢)
a7 :
Exact ~ =
Wu/FPI .8932 E-3 o
Monte Carlo
Variance |’]L‘_§l+ E—} 8 0/75 ) 5(768
Reduction(d)
Monte Carlo : :
Conventional
(Bernoulli 5‘ ' u”+ DI 877 6
parameter) (e)
Notes:
(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI is used; the exact should be within 5% of this value.
(b) CYBER 175
(c) The number of Ei for variance reduction and the number of Z, for
conventional. The values are not directly comparable,
(d) 95% confidence intervals within ¥ 10% of Pg

(e)

Same confidence interval as variance reduction.
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Table 3.11 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 9c

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAMPLE Ca C

PERFORMANCE FUNCTION: % =R-5

Varisble Type Mean/Median" Std. Dev./ cov"
K LN >5.0 * 02"
' &
S LN 10.0* 0.2
RESULTS:
Probability Total Sample
of Failure CPU-Time(b) size, k(c)
(a) '
Exact -
Wu/FPI 54T E-4 '
Monte Carlo o c 3 68 | '
Variance D2 - . .
Reduction(d) ; 0 / HL [ ‘ l 589
Monte Carlo .
Conventional -
(Bernoulli lb¢. {0 T61196 |
parameter){e) | .~

Notes: .
(a) Exact value using POFAIL if two variables. If more than two,
Wu/FPI 1is used; the exact should be within 5% of this value,

(b) CYBER 175

(c) The number of ;i for variance reduction and the number of 2, for
conventional. The values are not directly comparable.

(d) 95 confi&ence intervals within ¥ 10% of Pp

(e) Same confidence interval as variance reduction.
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Table 3.12 Example of the Performance of a Variance Reduction Monte Carlo
Program; EXAMPLE 9d

DEMONSTRATING THE

EXAMPLE

94.

PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

PERFORMANCE FUNCTION: % = R- S

Variable Type Mean/Median" Std. Dev./ cov”
R LN. >7.0% 0.2
S LN. | 0. 0% 0.2%
RESULTS:
Probability Total Sample
of Failure CPU-Time(b) Size, k(<)
(a) /
Exact
Wu/FPI IQEZGGE E'L}‘ /\'\
Monte Carlo ‘
Variance o2 - .
Reduction(d) Z© SGE q— 20 ?7 [fqu7
Monte Carlo
Conventional
(Bernoulli 399~ CB | 8 4092
parameter)(e) | _~

Exact value using POFAIL if two variables.

If more than two,

Wu/FPI 1s used; the exact should be within 5% of this value.

The number of ;1 for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

Notes:

(a)

(b) CYBER 175
(c)

(d)

(e)

95% confidence intervals within ¥ 10% of Pg

Same confidence interval as variance reduction.
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3.8 Comparison of Computer Costs of Variance Reduction and Conventional

Monte Carlo

Example 9a, b, c, and d was designed to illustrate how computer costs
increase as ﬁoint probabilities become smaller, providing estimates at the
same level of confidence. Figs. 3.5 and 3.6 show the relationship between
CYBER 175 CPU execution time and the probability level for the conventional
"Bernoulli" and the variance reduction estimates, respectively, for Examplé 9.
Then Fig. 3.7 demonstrates how much more efficient is variance reduction
for this problem. It should be noted that Figs. 3.5 through 3.7 relate
only to Example 9 and cannot be presented as being characteristic of the
relative behavior of the two methods.

3.9 Conclusions on Variance Reduction

Some general conclusions based on experiences exercising VARED are,

1. Variance reduction seems to outper{orm conventional Monte Carlo
consistently. However, in some cases the improvement is dramatic, in some
cases it is modest.

2. Related to item 1, it is difficult to predict computer costs.

At a given confidence level, CPU time depends strongly upon the form of
the performance fun;tion, the distribution of the variables, as well as‘
the probability level.

3. To construct a CDF, it is necessary to obtain several point proba-
bility estimates, as it is using FPI. Thus, the variance reduction Monte
Carlo method is not particularly effective when it is required to construct

a distribution function of a response variable.
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Fig. 3.5 CPU execution time for CYBER 175 for conventional Bernoulli
point probability estimate; Example 9; o = 5%, y = 10%
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Fig. 3.6 CPU execution time for CYBER 175 for variance reduction
point probability estimate; Example 9; a = 5%, y = 10%
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Fig. 3.7 Ratio of Bernoulli to variance reduction CPU execution time

for CYBER 175 for point probability estimate; Example 9;
a = 5%; y = 10%
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APPENDIX A. RANDOM SAMPLES FROM GIVEN DISTRIBUTIONS

Following are the algorithms used to generate random variates froﬁ
the normal, lognormal, Weibull, extreme value (Type 1), and thé Frechet
distributions. The computer, using a congruential algorithm, samples
random numbers uy from a uniform distribution U(0,1). Forms given below
transform uniform variates to variates Xi of other models.

Antithetic variates xi (defined as having a negative correlation to
xi) are generated as shown. These antithetic variates are used in the
variance reduction method described in Section 3.0.

A. Normal distribution, N(u, 0); sample two uniform variates, u

and U;4y+ Use the Box-Muller algorithm | 1, 2.

X ={V-2 Zn(ui) cos(27 ui+1)] o+

\
B. Lognormal distribution, LN(X, C,); sample two uniform variates,

X
u, and U, - Use the Box-Muller aigbrithm (1, 2].
J, = /Qn (1 + C2)
. in v
L‘x n ¥
Xy =[§xp(¢-2 En(ui) cos (27 ui+l)] Oy + uy

x! = e:'.p(-xi + 2 ux)

C. Weibull distribution
a
Fe(x) = 1 - exp ( - (g) ) = un U[0,1]

a
1-u=exp (g) } ~ ulo,1]

a
- tn (1 - u)-@g—)
Thus,

l/a
X, = B(- 2n (1 - ui)

' l/a
X = B(- &n (ui))
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D. EVD distribution

Fx(x) = exp (-exp(-a(X - B)) = u ~ y[0,1)
exp (-a(x = B)) = - gn u

- a(x - B) = ¢n (- &n u)
Thus,
1

x, = B - p n(- ﬁn(ui))

' wg oLl -
x; =8 3 gn(- 2n(l “1))

E. Frechet distribution

k .
Fx(x) = exp -(-z—) =u~n U[0,1]

kxl-) k- - 2n(u)

Thus,

x; =v (= ta(u)) "k

))-l/k

' = - -
X; =V (- 2n(Q1 uy
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APPENDIX B. LISTING OF CONVENTIONAL MONTE CARLO PROGRAM (COMOC)

This version runs on the VAX and the CYBER 175. It is not interactive.

The performance function is introduced in subroutine LSFMC as XA.

See listing.

Card 1 Limit state function (not used in program; only printed onm output)
Card 2 Number of trials; number of variables (free format)
Card 3 PLOT and ISTD type

PLOT: Yi‘s are sorted to construct empirical CDF
0 = no sort
1= Yi's are sorted
ISTD; option to enter standard deviations or coefficients of
deviations or coefficients of variation of each variable
(if lognormal, alwavs use COV).
0= Ccov
1 = Std., dev.
Now enter each variable, its distribution type, and its moments.

Card &4 Variable name.

Card 5 Distribution, mean, and standard deviation

1 = WEI (Weibull)

[ ]
L]

NORM (Normal

L2
[ ]

EVD (Extreme value distribution)

£~
N

LN (Lognormal; always use median and COV)

5

FRE (Frechet)

Then repeat 4 and 5 for all of the other variables.
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1:»

23
33
4:
S
-}
73
8:
9
10;
11:
12:
13:
14;
135:
16:
17:
18:
19:
20:
211
221
233
24;
25:
26:

27

28:
29:
3@:
31

32

33:
34:
3I5:
36
37:
38:
39
40;
41
423
43:
44:
45:
463
473
48:
49
S50:
St
52
53
S4;
S5
561
573
581
59:

651

8o24

7901

913

1234

c
Ce
c

3

PROGRAM GMC

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION INAME (48) ,XMEAN (403) ,XSTD(4@) ,DIST (48) ,DTRANS (4@) , X
DIMENSION Y (3000@) ,F(35),AL(40) ,BE(40)

COMMON /TWO/ PI,PI2
CHARACTER#8@ BGRS,FIN,FOUT ,DTRANS#7,AA#7 ,BB#4,CC#3,DD#3 EE#
DATA AA/ ‘WEIBULL '/

DATA BB/ 'NORMAL '/

DATA CC/'EVD'/

DATA DD/'LOG'/

DATA EE/'FRECHET'/

FORMAT (A10@)

CONT INUE

READ (S, * (A) * ,END=888B) GRS
READ (5,#) K,N

READ(S.#) PLOT1,PLOT2,I1STD
READ (S,#) ISEED

DO 7901 I=1,N

READ (5,651) INAME(I)

READ (5,#) DIST(I) ,XMEAN(I) ,XSTD(I)
CONT INUE

IF(1STD.EQ.@) THEN

DO 913 I=1,N
IF(DIST(I).ER.4.) GO TO 913
XSTD (1) =XMEAN (1) #XSTD(I)

CONTINUE
END IF CONVENTIONAL

MONTE CARLO

DO 1234 I=1,N " |, PROGRAM (COMOC):
AL (1)=0.D0

BE (1) =@. D@ Runs on the VAX
CONTINUE or CYBER 175
PI1=4.D@#DATAN(1.D@)
PI2=FI+PI

DO 1 I=1,N

IF(DIST(I) EQ.1.) DTRANS(I)=AA
IF(DIST(1).EQ.2.) DTRANS(I)=EB
IF(DIST(I).EQ.3.) DTRANS(I)=CC
IF(DIST(1).EQ.4.) DTRANS(1)=DD
IF(DIST(I).EQR.S5.) DTRANS(1)s=EE

IF(DIST(1).EQ.1.) CALL WEI(XMEAN(I) ,XSTD(I),AL (1) ,BE(I))
IF(DIST(I).EQ.3.) CALL EVD(XMEAN(I) ,XSTD(I) ,AL(I) BE(I) ,PI)
IF(DIST(I).EQ.S.) CALL FRE(XMEAN(I) ,XSTD(1),AL(]I) ,BE(I))

1 CONTINUE
THE DATA 1S PRINTED OUT.
WRITE(&,11) BGRS,K,N

WRITE(&6,12)
WRITE (6,13) (INAME (1) ,DTRANS (1) ,XMEAN(I) ,XSTD(I) ,I=1,N)

GENERATE RANDOM # AND CORRESPONDING RANDOM VARIABLE
NUM=Q

DO 4 I=1,K

DO 3 J=1,N

CALL GENX(DIST(J) JAL (J) 4BE (J) ,X (J) ,XMEAN(J) {XSTD (J) , ISEED)
CONTINUE

CALL LSFMC(Y (I) 4(N,X)
IF(Y(1).LE.D.D@) NUM=NUM+1
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60: 4 CONTINUE

61: 23 CALL STAT(Y,K,YMEAN,YSTD,YMED,YCOV)
62: 124 WRITE(&,1S) YMEAN,YSTD,YMED, YCOV
&3: C ' '

64: C# ROUTINE TO ACCUMULATE NUMBER OF TRIALS WITH NEGATIVE Y(I)
&S: C# VALUES AND PRINT QOUT RESULTS . )

6&6: C

&7 RATIO = DBLE (NUM) /DBLE (K)

68: WRITE(6,9) NUM,RATIO

&9 9 FORMAT(/,18X, '"NUMBER OF NEG Y VALUES =',15,". " ,4X,
70: +'PERCENT OF TRIALS=',F9.6)

71 C

72: C» THE SORTED VALUE OF Y AND THE EMPIRICAL CDF ARE PRINTED.
73: IF(PLOT1.EQ.2.) GO TO %2

74: CALL QSORT(Y,K)

75: 92 IF(PLOT2.ERQ.@.) GO TO 3454

746: WRITE(6,1017)

77: 1@17 FORMAT(////,14X, 'SORTED VALUES OF Y AND THE EMFIRICAL CDF‘,
78:; Ji=1

79: J2=3

80: 3230 WRITE(6,1003) J1,(Y(1),I=J1,32)

B1: 1002 FORMAT(1X, "1 = ' IS5, SE13.5)

82: J1=J1+5

83: J2=]2+5

84: IF(J1.GT.K) BO TO 3031
8S: IF(J2.6T.K) THEN

86: 2=K ’

B7: GO TO Z@ze

BB: END IF

B9: GO TO @30

9@: 3I071 CONT INUE

91: WRITE(&,67)

Q2: &7 FORMAT (/)

93: J=0

Q4. Ji=1

QS5: DO 1009 I=1,K

R6: J=J+1

97 F(J)=(DBLE(I)—-.5)/DBLE (K)
98: IF(J.EQ.5.0R.1.EQ.K) THEN
99; WRITE(6,1003) J1, (F(L),L=1,J)
100: J=0

10t: Ji=J1+5

182; END IF

103: 1009 CONTINUE
1@4: 34546 CONT INUE

105:
106: 11 FORMAT (5(/) ,3@X, "MONTE CARLO SOLUTION',S(/),10X,

107: +'LIMIT STATE FUNCTION 1 *,A,S5(/),18X,

1@8: + SAMPLE SIZE, K=',17//18X, NUMBER OF RANDOM VARIABLES, N=',13/,
109: 12 FORMAT (26X, 'RANDOM VARIABLES *,//18X, ‘VARIABLE ' ,2X,

110: +'DISTRIBUTION' ,8X, "MEAN’,12X, 'STD DEV‘)

111 13 FORMAT(/11X,A7,5X,A7,5X,E12.5,5X,E12.5)

112; 1S FORMAT(/////1@X, 'STATISTICS OF Y 1°'//18X, 'MEAN =’ E13.5//1@x
113: +'STD DEV =',E13.5//10X, '"MEDIAN =',E13.%5//10X, 'COV =,

114; +E13.5,4(/))

115: 17 FORMAT (1H1,2(/) ,14X, 'SORTED VALUES OF Y AND THE EMFIRICAL CDF ')
116: 19 FORMAT ((5E13.5))

1173 GO TO sees

118: B888 CONTINUE
119: 125 STOP
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120: END ,
1211 SUBROUTINE STAT (U,M,XM,STD,XMED,COV)
122: C

123: C# THIS SUBROUTINE CALCULATES THE STATISTICS (MEAN,STD DEV,MEDIAN
124: C# OF Y FUNCTION.

125;: C
1261 IMPLICIT DOUBLE PRECISION (A-H,0-2)
1272 DIMENSION U(M)
128: C XK=M
129 XM=@,
1301 DO 63 I=1,M
131: XM=XM+U (1)
132: &3 CONTINUE
1332 XM=XM/ XK
134; STD=2.
135; © DO 64 I=1,M
1361 srn:srn+<u<x)-xn)-~~
137: 64 CONTINUE
1381 STD=STD/ (XK-1.D@)
139; STD=DSORT (STD)
142; COV=STD/XM
141: XMED=XM/DSQRT (1.D@+COV##2)
142; RETURN
143; ~__END
1441 SUBROUTINE GENX(DIST,ALPHA,BETA,X,XMEAN,XSTD, ISEED)
145; IMPLICIT DOUBLE PRECISION (A-H,0-2)
1463 COMMON /TWO/ PI,PI2
147: C GENX obtains
148; IDIST=INT(DIST+.1) random samples
149; AA=RAN ( 1SEED)
150: G0 TO (1,2,3,4,5), IDIST from distributions
151: 1 X=BETA# (~DLOG (AA) ) ## (1. DB/ALPHA)
1523 RETURN
153: 2 BE=RAN (ISEED) RAN is library
154, E=DSQRT (-2. D@#DLOG (AA) )
155: X=E#DCOS (P12#BE) #XSTD+XMEAN uniforn random
1563 RETURN number generator
157: 3 X=BETA-DLOG (~DLOG (AA) ) /ALPHA
158; RETURN for CYBER 175
159: 4 BB=RAN ( ISEED)
160: SDX=DSORT (DLOG (1.D@+XSTD##2) ) o
1613 UX=DLOG ( XMEAN) ,
162: E=DSORT (-2. D@#DLOG (AA) )
1631 X=DEXP (E#DCOS (P12#BB) #SDX+UX)
1641 RETURN
165;: S X=BETA# (-DLOG (AA) ) ## (—1.DB/ALPHA)
1663 RETURN
1675 _END
1681 SUBROUT INE BISECT (COV, ISIGN,ALPHA)
1691 IMPLICIT DOUBLE PRECISION (A-H,0-2) .
170: C ISIGN = 1; WEIBULL DIST.
171: C = 2; FRECHET DIST.
1723 F (X,COV) == (1,D@+COV##2) #GAMMA (X) ##2+GAMMA (2, #X)
173; IF(ISIGN.EQ. 1) Xi=mCOVe#(1.08)
174: IF(ISIGN.ED.2) X1=COV##(.&77)/2.33
1751 IF (ISIGN.EQ.2.AND.X1.GT..49D@) X1=, 48999999
1761 7 IF(ISIGN.EQ. 1) Fi=F(X1,COV)
1771 IF (IS1GN.EG.2) Fim=F(-X1,COV)
1781 IF (DABS(F1).LE.1.D-1@) GO TO 1

179: X2=X1+.01D0



E-55

180: IF(ISIGN.EQ. 1) F2=F(X2,CO0V)
181: IF(ISIGN.EQ.2) F2=F(-X2,C0V) ' BISECT used to
182: F12=F1#F2

1831 IF(F12.LT.0.) GO TO 20 compute Weibull
184; IF(DABS(F1) .GT.DABS(F2)) X1=X2 and Frechet
:gz: égcggastm.l.'r.nassurzn X1=X1-.01D@ shape parameter
187: 20 CONTINUE (exponent)
188: 2 X3I=(X1+X2)#,.5D0

189: IF(ISIGN.EQ.1) F13=F(X1,COV)#F (X3,COW

190: IF(ISIGN.EQ.2) F13=F (-X1,COV)#*F (-X3,C0V)

191 IF(F13.LT.0.) X2=X3

192: IF(F13.6T7.0.) X1=X3

193: DX=DABS (X1-X2)

194; IF(DX.GE.1.D-9) GO TO 2

195;: ¢ ALPHA=1.DB/X1

196: RETURN

197: END

198: SUEROUTINE WEI (XMEAN, XDEV,ALPHA,BETA)

199: IMPLICIT DOUBLE PRECISION (A-H,0-2) ,
200: COvV=XDEV/XMEAN
201: CALL BISECT(COV,1,ALPHA) ‘ Computes
202: AL1=1,DB/ALPHA Weibull
203: BETA=XMEAN/GAMMA (AL 1)
204; RETURN parameters
205: END _

T 2067 SUBROUTINE FRE (XMEAN,XDEV,ALPHA,EBETA)

207: IMPLICIT DOUBLE FRECISION (A-H,0-2) Computes
208: COV=XDEV/XMEAN

2@9: CALL BISECT(COV,2,ALPHA) ~ | Frechet
210: AL1=1,D@/ALFHA

211: BETA=XMEAN/GAMMA (-AL 1) parameters
212: RETURN

213; END
214: SUBROUTINE EVD (XMEAN,STD,ALFHA,BETA,FI)

215: IMPLICIT DOUBLE PRECISION (A-H,0-2) Computes
216: ALPHA=P [/ (STD#DSQRT (&.D0) ) EVD

217: BETA=XMEAN-.577215656490153/ALPHA

218: RETURN parameters
219: END — -
220: DOUBLE PRECISION FUNCTION GAMMA (Y1)

221: IMPLICIT DOUBLE PRECISION (A-H,0-2)

22 COMMON /TWO/ PI,PI2

223: X=Yi+1,.D+@ The gamma
224; I=X function
225: IF(X.GE.6.8D+2)G0 TO 4564

226: N=INT(X)

227: Z=(6.0D+@) ~-N+X

228: 4864 Y=1 . D+@/Z%%2

229: ALG=(2~,5D+@: #DLOG(Z)+.SD+@+DLOG (FI2) -

230: I-(1.D+@/(12.D+0#2))# (((Y/@.14D+3-1.D+0/0. 1@SD+2) Y+
231: 1.D+0/.3D+2) #Y-1,D+D)

232: IF(X.GE.6.D+@)G0 TO 457

233: ITE=6-N

234: DO 3 J=1,1ITE

235: A=X+J-1,D+0

236 , ALG=ALG-DLOG (A)

237: 3 CONTINUE

238: 4%7 GAMMA=DE XP (ALG)

239: RETURN
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240: END

241 SUBROUTINE QSORT(A,N)

242: IMPLICIT DOUBLE PRECISION (A-H,0-2)

243; DIMENSION A(N) ,KSL (24) ,KSR(24)

244; KS=1 :

245; KSL(1)=1

2461 KSR (1)=N

247: 10 CONTINUE

248: L=KSL (KS)

249; KR=KSR (KS)

250: KS=KS-1 This is the
251: 20 CONT INUE

2%2, I=L sort routine,
2533 J=KR QUICKSORT
254: LR=(L+KR) /2 :

255: X=A (LR)

256: 30 CONT INUE

257: IF(ACI) .LT.X) THEN

258: I=I+1

259: GO TO 3@

260: END IF

261: 40 CONT INUE

262: IF(X.LT.A(J)) THEN

263: J=J-1

264: GO TO 4@

2465: END IF

266: IF(I.LE.J) THEN

267: W=A(I)

268: A(l)=A(J)

26%9: A(J)=W

27e: I=]+1

271%: J=J-1

272: END IF

273: IF(I.LE.J) GO TO 3@

274; IF(I.LT.KR) THEN

275: KS=KS+1

276: KSL (KS)=]

277 KSR (KS) =KR

278: END IF

279 KR=J

288: IF(L.LT.KR) GO 70O 20

281: IF(KS.NE.B) GO TO 1@

282 RETURN

283: END

284: SUBROUTINE LSFMC(XA,N,X)

2835 IMPLICIT DOUBLE PRECISION (A-H,0-Z)

286: DIMENSION X (N)

2871 XA=X (1) -X(2) =< This 1is where the
288: RETURN

289: END limit state is

introduced
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APPENDIX C. THE SORT ROUTINE: "QUICKSORT"

QUICKSORT is described in detail in the book by Wirth [7], who describes
its performance as "'spectacular,'" and claims that it is the best sorting '
method on arrays known so far. The method is based on exchanges and the
inventor C.A.R.Hoare recognized that sorting becomes most efficient when
exchanges are made over large distances.

The table below shows execution times (in milliseconds) consumed by
several proposed sorting methods as executed by the PASCAL system on a
CDC 6400 computer. The three columns contain times used to sort the
already ordered array, a random permutation, and the inversely ordered
array. The left figure in each column is for 256 items, and right one
for 512 items.

In summary, the computational effort needed for QUICKSORT is of the

order of n log n.

Ordered Random Inversely Ordered
Straight insertion 12 23 366 1444 704 2836
Binary insertion 56 125 373 1327 662 2490
Straight selection 489 1907 509 1956 695 2675
Bubblesort 540 2165 1026 4054 1492 5931
Bubblesort with flag 5 8 1104 4270 1645 6542
Shakersort 5 9 961 3642 1619 6520
Shellsort 58 116 127 349 157 492
Heapsort 116 253 110 241 104 226
Quicksort 31 69 60 146 37 79
Mergesort 99 234 102 242 99 232

Execution Times of Sort Programs,
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APPENDIX D. LISTING OF THE VARIANCE REDUCTION MONTE CARLO PROGRAM (VARED)
This version runs on the VAX and the CYBER 175. It is not interactive,
The performance function 1is introduced in subroutine LSFMC, then compiled

and linked to the rest of the program.

Data Input for the VAX Version Variance Reduction Program

Card 1 Limic State Function (not used for calculatiéns in the program)
Ex: g = R-Sor R=S§, etc.
Card 2 Number of Trials (the preliminafy value of K); Number of Variables;
Maximum Error in Secant Method for Solution of Maximﬁm Impact
Variable (a small number)
Ex: 1000, 3, 1.D-6
or 10000,5,1.D-7
Card 3 Confidence Interval; Gamma; ISTD;
a. C.I. =0 to 100 in percent: Ex: 90; imrlies 90% C.I.
b. Gamma 0 = Y b 1, but typically choose y from 0.05 to O.20.
See Eq. 3.21 ff,
¢. ISTD = OPTION to enter standard derivations and coefficients
of variation of each variable (for LN Dist, always use COV)
0 = cov
1l = Std. dev.
Card 4 Enter ISEED
Any integer number between O and 262,139 to start the random sampling.
Ex: 23, 579, etc.

Card 5 Enter variable name. (Free format)
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Card 6 Enter corresponding distribution, mean, and standard deviation
(1f LN always input median and COV); Ex: 1, 20, 2 .
a. dist, = 1 = WYeibull
2 = Normal
3 = EVD
4 = Lognormal (LN)
5 = Frechet

Then repeat 5 and 6 for all of the other variables.
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1t FRIGRAM GMC
Z: IMFLICIT DOUBLE PRECISION (A=-H,0-2)
= DIMENSION INAME (2@) ,XMEAN (2@) \XSTD (2@) ,DIST (2@) ,DTRANS (2@) , X (%
a: DIMENSION Y (12000) ,F (5) (AL (20) ,BE (20) ,XA(2@) ,TX (20) , TS (@)
5: COMMON /TWO/F1,SFI2,F12
o3 CHARACTER#7@ GRS ,FIN,FOUT,AA#7 ,BB#&,CC#3,DD#3 EE#7
7: CHARACTER#7 INAME ,DTRANS
8: DATA AA/ ‘WEIBULL '/
9: DATA BE/ 'NORMAL "/
10 DATA CC/'EVD '/
113 DATA DD/ 'LOG'/
23 DATA EE/ FRECHET '/
13: C
14; READ(S, ‘' (A) ' \END=B888) GRS Program VARED. Monte
15: READ(S,#) K,N,EFS
163 READ(S,#) ZAL,GAM,ISTD,PLOT Carlo using variance
17: READ (S, #) ISEED reduction method; runs
18: DO 79@1 I=1,N -
19: READ (S, ' (A) ') INAME(I) on the VAX or CYBER 175
20: READ (S,#) DIST(I) ,XMEAN(I) ,XSTD(I)
21t 7901 CONTINUE
22: BRO4 CONTINUE
23: IF(ISTD.ED.@) THEN
24; DO 913 I=1,N
2S: IF(DIST(I).EQ.4.) GO TO 913
261 XSTD (I)=XMEAN (1) #XSTD (1)
27: 913 CONT INUE
28; END IF
29; IF(.GT.12000) K=10030
38: C
3Sl: C
22 DO 1274 I=1,N
323 AL (1)=0.D0
34; BE (1)=2.Dd
S: IF(DIST(I).ER.4.) THEN
Y TX(I)=XMEAN (I)*DSQRT (1.D@+XSTD (I) ##2)
37: TS(I)=TX(I)#XSTD(I) '
38: ELSE
39; TX (1)=XMEAN(I)
a0: TS(1)=XSTD(I)
a1: END IF
42: 1234 CONTINUE
az; FI=4.D@+DATAN(1.D@)
44; PI2=F1+FI
as; SFI12=1,D@/DSERT (F12)
46: DO 1 I=1,N
a7; IF(DIST(I1).EQ.1.) DTRANS(I)=AA
48 IF(DIST(I).EQ@.2.) DTRANS(I)=BE
49; IF(DIST(I).EQ.3Z.) DTRANS(I)=CC
50: IF(DIST(I).EQR.4.) DTRANS (I)=DD
S1: IF(DIST(I).EQ.5.) DTRANS(I)=EE
23 IF(DIST(I).EQ.1.) CALL WEI(XMEAN(I) ,XSTD(I),AL(I),BE(I))
53: IF(DIST(I).EQ.3.) CALL EVD(XMEAN(I) ,XSTD(I) ,AL(I) ,BE(I) ,FI)
S4; IF(DIST(1).EQ.5.) CALL FRE(XMEAN(I) ,XSTD(I) ,AL(I) BE(I))
5S: 1 CONTINUE
S61 C
57: C# THE DATA IS PRINTED OUT.
S8: C

Se: C MAIN LOOP USING ANTITHETIC VARIANCE REDUCTION METHOD



I-Y.H
&1:
23

-
-t e

&4:
&3
bb:
Y&
68:
&69:
70:
71:
72:
732
74:
75
76:
77:
78B:
79:
BO:
B1l:

23
83:
84:
85:
86
87:
88:
89:
90:

C FIND MAX. IMPACT VARIABLE E-61

DG=0.D®@
CALL LSFMC(G,N,TX)
DO 70@ I=1,N
TX (D) =TX (D) +TS(D)
CALL LSFMC(DGB,N,TX)
DGA=DGE-G
1F (DAES (DGA) .LE.DABS (DG)) GO TO 701
IvV=l
~ DG=DGA
701 TX (D =TX(I)=-TS(I)
70e CONTINUE

WRITE(&,11) BRS,K,N
WRITE (&6,96) ZAL,GAM
96 FORMAT (1@X, 'CONFIDENCE INTERVAL = “,F6.2, " %',//,
$ 10X, 'GAMMA = " F&6.2,///)
WRITE (6,559) IV
559 FORMAT (18X, ‘MAX. IMPACT VARIABLE = X(’',I2,") " 4/)
IF(DG.LE.®.D@) WRITE(&,561)
Sé61 FORMAT(1@X, "VARIABLE TYPE 1S STRESS',///)
1IF(DG.GT.0.D0) WRITE(&,562)
5632 FORMAT (1@X, "VARIABLE TYPE 1S STRENGTH',///)
WRITE(6,12)
WRITE(&,13) (INAME (1) ,DTRANS(I) ,XMEAN(I) {XSTD(I) ,I=1,N)
o CALCULATE PROB. OF FAILURE
Ki=1
K2=K
1Co=1
98 CONTINUE
DO 702 I=K1,K2
DO 7@3 J=1,N
IF(J.EQ.IVY GD TO 702
CALL GENX (DIST(J),AL (J) ,BE(J) X (J),XA(J),XMEAN(J) (XETD(J),ISE
702 CONT INUE
IF(DG.GT.0.D@) A=TX(IV)-3.D@#TS(IV)
IF(DG.LE.@.D@) A=TX(IV)+2,D0«+TS(IV)
BE=A+TS (1V)
CALL SECA(EPS,AB,IV,N,X)
CALL CDFFDF(DIST(IV) AL (IV) ,BE(IV) (X (IV) ,XMEAN(IV) XSTD(IV},
$ 1,CDF1,PDF)
1F(DG.LE.@.D@) CDFi=1.D@-CDF1
IF(DG.GT.@2.D@) A=TX(IV)-3.DB#TS(IV)
IF(DG.LE.®.D@) A=TX(IV)+2.DB#TS(IV)
B=A+TS (IV) '
CALL SECA(EPS,A,B,IV,N,XA)
CALL CDFPDF (DIST (IV) AL (IV) ,BE (IV) ,XA(IV) (XMEAN(IV) ,XSTD(IV),
$ 1,CDF2,PDF) ' ‘
IF(DG.LE.®.D®) CDF2=1.D@-CDF2
Y (1)=(CDF1+CDF2) #.5D@
702 CONTINUE
c
122 CALL STAT(Y,K1,K2,YMEAN,YSTD,YMED,YCOV)
IF(ICD.EQ.1) THEN
YM=YMEAN
YS=YSTD
YME=YMED
YC=YCOV
YMi=YM
ELSE
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120:
121:
122

M.
s ' O

124:
125:
126
127
128:
129:
130:
131:
122:
1372
124:
135:
126:
137:
128:
139:
14Q@:
141:
142:
143:
144;
145:
14¢:
147
148:
14%;
150:
151:
152:
153:
1S4:
155:
156:
157:
158
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:

176

1817

29T¢
1023

1289
3456

99

YM= (L aYM1+ (K2-K)#YMEAN) /H 2

YE]=ySe#e 2w (K=1) +KaYM1#222+YSTDa#2# (K2-K=-1)+ (KZ-K) #*YMEAN®#2
YST=YS1-KZaYM##2

YS=DSORT(YS2/ (K2-1))

YC=YS/YM

YME=YM/DSQRT (1.D@+YC##2)

END IF

ZAL1=.005D0+ (120.DB+ZAL)

ZAX=XINV(ZAL1) -
Ix=ZAX#YC/DSQRT (DBLE (K2))

FPL=YM#(1,.D0-2X)

PU=sYM# (1.DB+ZX)

WRITE(6,176) YM,ZAL,PL,FU

FORMAT(///,18X, 'ESTIMATE OF P = *,E13.5,//,
10X ,FS.2, ' % CONFIDENCE INTERVALS ARE',//,
10X, ‘PL = ' ,E13.5,5X,'FPU = "E13.5,/7/)

WRITE(&,15) YMEAN,YSTD,YMED,YCOV

IF(FLOT.EQ.Q@.) GO TO 34356

—EALLEG5ORT k) —
- THE SORTED VALUE -BF ¥—-AND—THEEMPIRICAL EDFAREFRINTED

— R FF e+

— FORMA T A A CORTED—VALHES- BF ¢ —AND-—FHE—EM-HRIEA—EDF—
Ji=1
2=5
WRITE(4,1002) J1,(Y(I),1=J1,d2)
FORMAT(1X,'I = *L,I5,SE1S.D)
J1=J1+5
J2=J2+5

IF(J1.6GT.kK2) GO TO 2031
IF(J2.6T.K2) THEN

J2=K2

GO TO 2272

END IF

GO TO Z@<e

CONTINUE

WRITE(&,67)

FORMAT (/)

J=02

Ji=1

DO 1809 I=1,K2

Jd=J+1
F(J)=(DBLE(I)-.5)/DBLE (KZ)
IF(J.ER.S.0OR.1.EQ.K2) THEN
WRITE(&6,1023) J1,(F(L),L=1,J)
J=08

J1=J1+S

END IF

CONT INUE

CONTINUE

Ki=K+1

K2=(YC#ZAX/GAM) #%2+1
IF(ICD.EQ@.1) WRITE(&,99) GAM,K2
FORMAT (// 418X, 'K FOR GAMMA = "JF&.2," IS ",1I&)
ICO=1C0O+1
1IF(1CO.EQ@.2.AND.K2.6T.K) GO TO 98

11 FORMAT(1H1,5(/),3@X, '"MONTE CARLDO SOLUTION  ,S(/),18X,

+°LIMIT STATE FUNCTION : ",A,S5(/),10X,
+'SAMFLE SI12E =',17//1@X, "NUMBER OF RANDOM VARIABLES =",15//)



182: 12 FORMAT (26X, ‘RANDOM VARIABLES',//18X, VARIABLE®,2X, E-63

1B1: +'DISTRIBUTIDN',BX.'HEAN',IZX,’STD DEV ')
182: 13 FORHAT(/11X,A7,5X,A7,5X,E12.5,5X,E12.5)
- 183: 15 FDRHAT(/[/lllﬂx,'STATISTICS OF P 3 °'//71@X, "MEAN = ,E13.5//108X,
184: +'STD DEV =',E13.5//1QX,'HEDIAN =',E13.5,//10X%, ‘COV =,
185: +E13.5,////)
186: IF(ANS!.ED.'F'.OR.ANSI.EG.'#') G0 TO 8320
187: WRITE(6,8301)
188: 8301 FORMAT (° DO YOU HAVE ANOTHER DATA SET 2(Y/N) " #%)
189: READ(5,8001) ANS3
190: IF(ANS3.EQ.'Y'.DR.ANSS.EQ.'y') GO TO 8304

191: 88868 CONTINUE
192s 125 STOF

193 END
194: SUBRDUT INE GOORT (A N)
195:\\ IMPLICIT DOUBLE PRECISION (A-H,0-2)
196: v DIMENSION A(N),KSL(24B)QKSR(24D)
197: KS=1 s
198: KSL(1)=1
199: KSR (1) =N
202: 10 CONT INUE
201: N\ L=KSL (KS)
202: KR=KSR (KS)
203 KE=KS-1
204: 208 CONT INUE
205: I=L \
206 J=KR
207: LR=(L+KK) /2
208: X=A(LF<,)\
209: 30 CONTINUE \ Sort routine used originally
210: IF(A(I).LT.X) THEN
211 I=1+1 , for program development.
2123 GO TO 3@ / Not needed for operational
213: END IF
214: 40 CONT INUE version.
215: IF(X.LT.A(IN THEN
216: J=J-1 )\
217 GO TO 40 N\
218: END IF ™\,
219: IF(I.LE.J) THEN
220: W=A(I)
221: A(I)=A(T)
222: A(J) =W
23: I=1+1
224; J=J-1 N\
225: END 1 \
226 /LE.J) GO TO 20 .
227: .LT.KR) THEN \,
228: KS+1 N\
229: SL (KS) =] N\
230: KSR (KS) =KR
231: END IF
232: KR=J
233: {F(L.LT.KR) GO TO 2@
234: IF(KS.NE.@) GO TO 1@
235: RETURN
234; END
237: SUBROUTINE SECA(EPS,A,B,IV,N,X)
238: IMFPLICIT DOUBLE PRECISION {A-H,0-2)

239: DIMENSION X (N)
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242: X(1lVv)=A ] e

241: CALL LSFMC(UGNX) | This defined the performance function
242 X(IV)=B

243: CALL LSFMC(V,N,X)

244: | CONTINUE

245 IF(DAES (X (IV)~-R) .GE.EFS) THEN This subroutine determines the '
- . v =2l —- - -

E:;" :;éV) B-Ve (B-A) /(V-LD poilnt at which the CDF is
248: B=X(IV) evaluated for the maximum
249: U=V { ¢ {abl
250: CALL LSFMC(V,N,X) mpact varilable
251: GO TO 1

252: END IF

253: RETURN

bl H END

255: SUBROUTINE CDFFDF(DIST,ALFHA,BETA,X,XMEAN,XDEV, ICDF,CDF ,FDF)
2546: IMPLICIT DOUBLE PRECISION (A-H,0-2)

257: COMMON /TWO/FI,SFI2,PI2

258: IDIST=INT(DIST+.1)

239: G0 TO (1,2,3,4,5),IDIST

260: 1 RE=X/BETA

261: EW=REB*+ALFHA

262: IF(EW.GT.200.) EW=220. Evaluates
263 EXFWEI=DEXF (-EW)

264; CDF=1.D@-EXFWE]I the CDF
265:; IF(ICDF.ER.1) GO TO 10O )

266: FDF=(ALPHA/BETA) # (EW/RB) #*EXFWE]

267: GO TO 10

268: 2 Z=(X-XMEAN)/XDEV Ty

269: CDF=CDFNOR (Z)

270: IF(ICDF.EQ. 1) GO TO 10©

271: FDF=CFIZ#DEXP(~Z+##2#%,5D3) /XDEV

272: GO 70 1@

273 I EE=ALPHA® (x-RETA)

274; 1F(EE.GT.200.) EE=20C.

275: YY=DEXF (-EE)

276 IF(YY.GT7.220.) vYYy=208.

277 CDF=DEXF (=YY)

278: IF(ICDF.EQ.1) GO TO 1@

279: EY=EE+YY

280: IF(EY.GT.200.) EY=200.

281: FPDF=ALPHA®*DEXF (-EY)

282: GO 7O 10

283 4 Cx21=XDEV#+2+1.D0

284: YMEAN=DLOG (XMEAN)

285: YDEV=DSQRT (DLOG(CX21))

286 2= (DLDG (X)) -YMEAN) /YDEV

287 CDF=CDFNOR(Z)

288: IF(ICDF.ER. 1) GO TO 1@

289 EZ=—(I#%2)%,5D0

290: IF(EZ.LE.-202.) EZ=-2080.

291: PDF=SPI12#DEXP (EZ)/ (YDEV#®X)

292: GO TO 1@

293: S TEMF=(BETA/X)##ALPHA

294; CDF=DEXP (-TEMF)

295: IF(ICDF.EQ. 1) GO TO i@

296: " FDF=CDF #TEMF#ALFHA/X

297: 10 RETURN

298: END

299:

DOUBLE PRECISION FUNCTION XINV (D)
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The inverse normal
using the secant

method

THEN

CDFNOK (Z)

56543782D@/,C/1.781477937D@/,

2

(D+T#E))))

<.p@#22%(1.D8-5.D@#22))) /DABS(Z)

E STATISTICS (MEAN,STD DEV,MEDIAN,COV)

(A-H,0-1)

z0e0: IMPLICIT DOUBLE PRECISION
3e1: F(X,P1)=P1=-CDFNOR (X)
302: y=2Z
30c: IF(Z.GT7.2.5D@) Y=1.D0-Z
304: C2=2.515S17D0
30c: C1=0.802853D8
306: C2=0.210328D0
3087: Di=1.432788D0
308: D2=0. 18926900
309: D3=2.001328D0
310: T=(-2.D@#DLOG(Y) ) ##,.5SDO
311 DNUM=C@+T# (C1+T#C2)
312: DNOM=1.@D@+T# (D1 +T#(D2+T#D3))
313 X=T- (DNUM/DNOM)
314: IF(Z.LT.@.5D0) X=-X
315: A=X
316: B=X+.0201D0
317: v=F (B, 2)
318: U=F (R, 2)
319: XX=B
320: 1 CONTINUE
321 1F (DABS (XX-A) .BE. 1.D-1@)
I22: XX=B-V# (B-A) / (V-U)
323: A=B
324: B=XX
3I25: U=v
326: V=F (XX ,2)
327: GO TO 1
328: END IF
329: X INV=XX
330: RETURN
331 END _
I32: DOUBLE PRECISION FUNCTION
3%%: C THIS FUNCTION COMPUTES THE NORMAL CDF.
334: IMPLICIT DOUBLE PRECISION (AR-H,0-2)
335: COMMON /TWO/FP1,SPI2,PI2 '
334 DATA A/0.3193B153DB/,B/-0:3
337: +D/-1.821255978D@/,E/1.330274429D0/
338: EZ=-(Z#%2)#,5D@
I39: CDFNOR=0. QD@
340: IF(EZ.LE.-200.208) GO TO 1
341 IX=SFI2#DEXF(EZ) '
342 IF(DABS(Z).GT.6.D8) GO TO
343: T=1.D@/ (1.D@+(@.2316419DO#DABS (Z)))
344; CDFNOR=ZX#T# (A+T# (B+T# (C+T#
345; GO TO 1
346 2 12=1.D0B/(Z+2)
347: CDFNOR=ZX# (1.D@-Z2#(1.DB-
348: 1 IF(Z.GT.@.8D@) CDFNOR=1.@D@-CDFNOR
349; . RETURN
__3s5@: END ) ' ' B -
351 suaRoU?IﬁE’ETE?TU,Ki,EE;XH,STBTiﬁEBTEUV>
Is52: C '
x53; C# THIS SUBROUTINE CALCULATES TH
3I54: C+ OF Y FUNCTION.
3I55: C
356 IMPLICIT DOUBLE PRECISION
357: DIMENSION U(K2)
358: XK=K2-K1+1
359: XM=0.
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419:

IF (DABS (XX-X1).GE.1.D-9) THEN

TE0: DC &7 I=k1,K2
Tel: xr=xXM+U (1)
3628 &7 CONTINUE
63 XM=XM/ XE.
J64:; ETL=0.
Te5: DO 64 1=kl ,}
366 STD=STD+ (U(1)-XM)#%2
67 64 CONTINUE
348: STD=STD/ (X¥~-1.D@)
369: STD=DSORT (STD)
370: COV=STD/XM
I71: XMED=XM/DSQRT (1.D@+COV#%2)
372 RETURN
3733 END
374: SUBROUTINE GENX(DIST, ALPHA BETA X, XA,XMEAN,XSTD, ISEED)
7S IMFLICIT DOUBLE PRECISIDN (A -Hj o-z»
3768 COMMON /TWO/PI,SPI2,FI2 GENX obtains random
I77: C
378: IDIST=INT(DIST+. 1) samples from the
A AA=RAN ( ISEED) di'stribut ions
380: GO TO (1,2,3,4,5), IDIST
I681: 1 X=BETA+* (-DLOG (AA) ) ## (1 .DB/ALPHA)
382; XA=RETA#* (-DLOG (1.D@-AA) ) ## (1.DB/ALFHA)
I83: RETURN RAN is library
384: 2 BE=RAN ( ISEED)
285: E=DSGRT (-2, D@#DLOG (AA)) uniform random
386! X=E*DCDS (FI12#EE) #XSTD+XMEAN number generator
387: XA=-X+2.D@+*XMEAN
IB8: RETURN for CYBER 175
389: 3 X=BETA-DLOG (-DLOG (ARA) ) /ALFHA
390: XA=BETA-DLOG (-DLOG (1.D@-AA)) /ALFHA
IP1: RE TURN
I92: 4 BE=RAN (1SEED)
z93: SDX=DSORT (DLOG (1.D@+XSTD##2))
394: UX=DLOG ( XMEAN)
I95: W=DSORT (~2.D@+DLOG (AR) Y #DCOS (PI2+BE) #SDX+UX
396: X=DEXF (W)
T 297 XA=DEXF (-W+2.D@#UX)
398: RE TURN
399: S X=BETA#* (-DLOG (RA) ) ## (-1, DB/ALFHA)
400: XA=KETA# (-DLOG (1.D@-AA) ) ## (-1 ,.D@/ALFHA)
401: RETURN
402 END
403: SUEROUTINE SECA1 (COV, ISIGN,ALFHA)
4Q4: IMPLICIT DOUEBLE PRECISION (A-H,0-2)
405: C ISIGN = 1; WEIBULL DIST.
4R6: C = 2; FRECHET DIST.
407: F(X,COV)=-(1. DB+COV§!°)iGAMMA(X)**”+GAMMA(2.*X)
408: IF(ISIGN EQ.1) X1=COV##(1.08)
4@9: IF(ISIGN.EQ.2) X1=COV##(.677)/2.33
410: IF(ISIGN.EG.2.AND.X1.GT..49D0) X1=,.4899999%
a11: 7 IF(ISIGN.EQ. 1) Fi=F(X1,COV)
412: IF(ISIGN.EQR,2) F1=F(-X1,COWV)
413: IF(DABS(Fl) .LE- 1.D-1@) GO TD 1 Secant method for
414: X2=X1+.01D0
415; IF(ISIGN.EQ.1) F2=F(X2,C0W) computing Weibull
416 IF(ISIGN-EQ. 2) F2=F(—X2,CDV) and Frechet exponents
417: XX=X2
418: 1@ CONTINUE




420:

XX=X2-F2# (X2=-X1)/(F2-F1) ' E-67

421: X1=X2

422 X2=XX

423 Fi=F2

424: IF(ISIGN.EQ. 1) F2=F (XX,COV)

425; IF(ISIGN.EQ.2) F2=F (-XX,C0OV)

426 60 TO 10

427: END IF

428: X1=XX

429: ALPHA=1,DB/X1

430: RETURN

431: END

432: SUBROUTINE WEI (XMEAN,XDEV,ALPHA,BETA)

433: IMPLICIT DOUBLE PRECISION (A-H,0-2) Computes Weibull
434; COV=XDEV/XMEAN

435: CALL SECAL (COV,1,ALPHA) parameters
436 AL1=1,.D@/ALPHA

437: BETA=XMEAN/GAMMA (AL 1)

438: RETURN

439; N

440: SUBROUTINE FRE (XMEAN, XDEV,ALPHA,BETA)

441: IMPLICIT DOUBLE PRECISION (A-H,0-2) Computes Frechet
442: COV=XDEV/XMEAN

443 CALL SECA! (COV,2,ALPHA) parameters
444; AL1=1.D@/ALPHA

445:; BETA=XMEAN/GAMMA (~AL.1)

444: RETURN

447 END

448: SUBROUTINE EVD (XMEAN,STD,ALFPHA,BETA,PI)

449; IMPLICIT DOUBLE PRECISION (A-H,b-2)

450: ALPHA=FI/ (STD#DSQERT (&£.D@)) Computes EVD
451 BETA=XMEAN-.57721564490153/ALPHA parameters
452: RETURN

453: END 7

454; DOUBLE PRECISION FUNCTION GAMMA(Y1)

455: IMPLICIT DOUBLE PRECISION (A-H,0-2)

454 COMMON /TWD/PI,SPI2,PI2

457 X=Y1+1,D+0 The gamma
458: Z=X function
459; IF (X.GE.&.@8D+R)G0 TO 456

4460: N=INT (X)

451: I=(&.@D+@) -N+X

4562: 456 Y=1.D+D/Z%#2

463: ALG= (Z~,5D+@) #DLOG(Z) +.5D+@#DLOG (PI2) -

464 Z-(1.D+@/(12.D+@#Z)) % ( ((Y/@.14D+3-1.D+0/@. 185SD+3) #Y+
4465: 1.D+@/.3D+2)#Y-1.D+@)

466 IF(X.GE.&.D+@)G0 TO 457

457 ITE=&6-N

4468: DO 3 J=1,1TE

469 A=X+J-1.D+0

470: ALG=ALG-DLOG (A)

471: z CONTINUE

472: 457 BAMMA=DEXF (ALG)

473: RETURN

474: END

4735:

Note: The performance function must be introduced in subroutine LSFMC.

For an example of subroutine LSFMC, see the last page of Appendix B.
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Introduction

The structural reliability analysis methods developed during the past
ten to fifteen years can be used to establish the COF of complicated
structural response function by forming the so-called 1imit state function
or performance function [1]. In the application of these methods [2 - 4],
the Taylor's series expansions are taken at the most probable points. For
a given response function value, there is a corresponding most probable
point which needs to be found using proper optimization or iteration
algorithm. Because at each of the most probabie point, there is no error
in the function and the error is small around the most significant region
for probability calculations, reasonably accurate solutions are assured.
Indeed, experience has indicated that the applications of these methods
usually results in high quality CDF estimation. However, when the response
function is complicated, and the computations of the response variables are
tedious, the above methods tend to be difficult to be implemented and/or
are prohibitively time-consuming.

Presented here is a more efficient scheﬁe Which is suitable for

- constructing the cumulative distribution function (CDF) of any complicated
function which has no explicit form, i.e., the objective function can not
be expressed in algebraic form. The method is particularly suitable for
the cases where the computation of the objective function is time consuming
such that the Monte Carlo method becomes prohibitively costly.

Efficient Method of Constructing COF using the Most Probable Points

The efficient method of constructing the CDF of a function starts with
a linear approximation of the response function about the mean values of
the independent random variables. Then the CDF values and the associated
most probable points for several “"predicted" response function values will
be computed. For any selected CDF value, however, the "predicted" response
function is not accurate if the response function is nonlinear, therefore,
the corresponding response function value will be "corrected" by solving
the actual values at the predicted most probable point.



In order to show how the method works, a simple example is established
to detail the above procedure. The example is a cantilever beam. The
random variables involved are the applied force, P, and the length, L,
which are assumed to be normally distributed variables. The mean and
standard deviation of P are (0.223, 0.019) Ibs. and the mean and standard
deviation of L are (20, 1) inches. The maximum stress, S, at the fixed end
of the beam is:

S = 787LP (1)
The mean value of S is approximately 3500 psi.

Define the reduced variables Uy and u, as

up = (P - 0.223)/0.019 (2)

up = (L - 20.)/1. (3)
Thus

P = 0.223 + 0.019y; | (4)

L=20+u, (5)

By substituting equations 5 and 6 into equation 1, the stress becomes
S = 3510 + 300u; + 175u, + 15ulu, (6)

By assigning a value for S, an iso-stress curves can be plotted on a two
dimensional u space as shown in Figure 1. Note that uj and u, are
standardized normal variables (with zero mean and unity standard deviation)
because P and L are normal variables. Therefore, on the Uj,u, coordinate
system, the joint probability density function is rotationally symmetric.
The most probable point for a given S is easily identified as the point on
8 iso-stress curve which is nearest to the origin.

Now we can start the approximation procedure by taking the first order

C
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expansion of S about the mean. Usually, one will Qperate on the L, P space
and then transform to uj, u, space. In this example, since the
transformations are linear, we can use Eq. 6 directly. The first order
expansion about the mean values (u; = 0 and up = 0) results in

S = 3510 + 300u; + 175up (7)

This equation is exact at u; = u; = 0 (where S = 3510) only, but can be
used as an approximation for other S values.

Based on Eq. 7, S is also a normal variable with a mean of 3510 and a
standard deviation of 347. It is obvious, however, that the accuracy of
the CDF of S will depend on the truncated higher order terms.
Traditionally, a low order expansion (such as eq. 7) is only used to
estimate the mean and the standard deviation. The CDF cannot be accurately
approximated.

For illustration purposes, only one CDF value will be considered. Let
351 = 3510 psi and S, = 4500 psi where 31 curve'is linear and passes through
the origin and S, is parallel to Sy in the u space. S, may be called a
"predicted" stress since eq. 7 is assumed to hold for all the stress values.
The predicted S, curve has a most probable point which is a point nearest
to the origin., Assuming that eq. 7 is accurate, the first order
reliability analysis method gives the following probability estimate:

P(S > 4510 psi) = o(- 8) (8)

where g is the minimum distance. The approximation, however, is not
accurate because the most probable point derived was based on the
inaccurate S equation. In fact, by substituting the most probable point
(derived by assuming $=4500 in Eq. 7) into Eq. 6, the exact value is S =
4660 psi. The iso-stress curves Sy, Sz and the exact S = 4660 are shown in
Fig. 1. The exact curve is nonlinear and passing through the predicted
most probable point. Since the predicted and the corrected curve match
closely around the most probable region for S > 4660 (note that in Fig. 1,
the two minimum distances are approximately equal.), the figure suggests
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the following approximation:

P(S Exact > 4660) = P(S Predicted > 4510) (9)

Mathematical Formulations
The above approximation can be formulated as follows. Let

I(X) = ag + ra;Xj + E = Zp + E (10)
where Z(X) is a function of the random variables, X. Zp is a random
variable representing the sum of the Taylor's first order terms and E
represents the sum of the higher order term. The error term should

actually be a random variable, but in the present method it will be
approximated by a deterministic value. E is defined based on the most
probable point, i.e.,

E = Z(most probable point for Zp = zp) - Zp (11)
where the most probable point is defined as a set of values of X which
maximize the joint probability density function of X subjected to the
constraint that Zp(X) = 2. The most probable point can be found using the
reliability analysis method [1].

Define the exact deterministic value of Z as 2z, then,

P(Z > 2)

P(Zp + E > 2)

= P(Z, > z - E) (12)

P

P(Zp > zp)

where zp is the predicted Z value using Z.. Equation 12 can be stated as :

p*
the probability of exceedance of Zp at zp is approximately equal to the
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probability of exceedance of the exact Z at the value of z computed using
the most probable point of Zp=zp. By replacing Z by §, Zp by 4510, and z by
4610, Eq. 12 becomes Eq. 9.

To construct the entire CDF, the above demonstrated procedure can be
repeated for other probability levels. Note that there is no limitation on
the number of random variables and that the random variables can be any
distribution.

The first order Zp seems to be able to provide good approximation
solutions as demonstrated in the following example. Improvements can be
made by including the second order terms in Zp. Alternatively, one can
perform additional first order Zp analyses at the tail regions using the
predicted most probable points.

Establishing COF - Example

The above algorithm has been used successfully to establish a CDF of
a problem. The problem is similar to the previous cantilever beam problem
except that the thickness of the beam is also modelled as a random
variable. The goal is to estimate the CDF of the maximum stress.

Figure 2 shows the resulting CDF based on the analytical solution of
the stress. CDF curves are plotted on the normal probability paper (the
COF of a normally distributed variable will be a 1inear line on this
paper); the Y coordinate uses u as the basic unit where u is a standardized
normal variates. '

Using the conventional first-order-mean-expansion, the resulting CDF,
in Fig. 2, is nearly a straight line indicating that S is approximately
normal. This is because the approximating function is linear and the
random variables studied are normal or nearly normal.

By applying the new algorithm, ten most probable points corresponding
to ten CDF values are computed, and used to compute ten additional
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deterministic solutions. These "new" stress values are the corrected
values for the "old" CDF values. Figure 2 shows that the corrected CDF
curve is very close to the "exact" (based on one million Monte Carlo
simulations) CDF curve except at the region where u < -3, as shown in Fig.
2.

In this example, the difference between Z, and Zp ranges from 0.2 %
(for u = -0.5) of Z, to 32 % (for u = -4.3) of Z,, suggesting that the
response function is significantly nonlinear. This is reflected by the
fact that, in Fig. 2, the corrected CDF curve is significantly non-normal.
Therefore, by using the new algorithm, it is possible to assess the results
by comparing Ze and Zp. Improvement is necessary only when the difference
is large.

To improve the accuracy at the tail regions, there are two possible

~ways ¢ (1). Take two more expansions at the tail regions (e.g., at u =

-2.5 and u = 2.5). (2). Use quadratic or incomplete quadratic
approximation about the mean values. The first method may be more
appropriate when the gquadratic approximations are difficult to obtain
although the latter may provide more accurate results for problems
involving highly nonlinear functions.

The performance of the new algorithm has also been evaluated using
Fig. 3. In this figure, the COFs of the three mean-based approximations
to the exact solution are constructed to compare with the exact CDF. The
three approximations are: linear, "incomplete" quadratic (second order
mixed-terms are neglected), and (complete) quadratic expansions about the
mean values of the independent random variables. By comparing the results
of Fig. 3 with those of Fig. 2, it can be concluded that the new
algorithm with only first order expansion performs better than the
conventional quadratic expansion. Due to the fact that the complete
quadratic approximations are much more difficult to obtain than the first
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order approximations, the new algorithm with only fifst order approximation
seems to be very suitable for estimating the CDFs for complicated
functions.

Summary

The performance of the new algorithm using the demonstrated example is
excellent by noting that only a number of deterministic solutions, in
additional to the first-order-mean-expansion, are required. The results
suggest that the new procedure is efficient and can be used to provide good
CDF estimations for engineering analysis problems.
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